Reducing ballistic range data for the projectile's drag coefficient

AIAA Journal ◽  
1970 ◽  
Vol 8 (12) ◽  
pp. 2297-2299
Author(s):  
C. T. CROWE ◽  
R. CARLSON
1972 ◽  
Vol 54 (3) ◽  
pp. 385-392 ◽  
Author(s):  
M. Vlajinac ◽  
E. E. Covert

An aerodynamic investigation was conducted to determine the laminar-flow drag coefficient of spheres of various sizes in a subsonic wind tunnel. The tests were conducted using the M.I.T.-N.A.S.A. prototype magnetic-balance system. By measuring the drag of different sized spheres without model support interference the tunnel wall effect can be deduced. The present results indicate that the classical wind tunnel correction does not completely account for the effects of model size and wall interference. That is, the corrected drag coefficient data for the different sphere sizes differ among themselves in the region of Reynolds number overlap.A comparison of the present sphere drag results with those of numerous other investigations including free-flight and ballistic-range data is given. The drag coefficients presented here are slightly lower than those of other workers for Reynolds numbers ranging from 20 000 to 150 000, but fall between the limits of experimental scatter for Reynolds numbers from 150 000 to 260 000.An analysis of the estimated error in the present data indicates the primary source to be measurement of the wind tunnel parameters rather than errors resulting from the balance system.


2010 ◽  
Vol 47 (1) ◽  
pp. 36-47 ◽  
Author(s):  
Jeffrey D. Brown ◽  
David W. Bogdanoff ◽  
Leslie A. Yates ◽  
Gary T. Chapman

1997 ◽  
Author(s):  
Keisuke Sawada ◽  
Eishin Dendou ◽  
Keisuke Sawada ◽  
Eishin Dendou

1992 ◽  
Author(s):  
WAYNE HATHAWAY ◽  
MARK STEINHOFF ◽  
ROBERT WHYTE ◽  
DAVID BROWN ◽  
JEFF CHOATE ◽  
...  

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


2016 ◽  
Vol 10 (6) ◽  
pp. 390 ◽  
Author(s):  
Qummare Azam ◽  
Mohd Azmi Ismail ◽  
Nurul Musfirah Mazlan ◽  
Musavir Bashir

Sign in / Sign up

Export Citation Format

Share Document