Fan Noise and Control: Turbine Noise Generation, Reduction, and Prediction

1972 ◽  
Vol 51 (5A) ◽  
pp. 1427-1438 ◽  
Author(s):  
M. J. Benzakein
Keyword(s):  

1970 ◽  
Vol 92 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Ramani Mani

An analysis is presented which treats the noise generation from an axial flow fan row by given forces including the effects of a moving medium. The linearization of Euler’s equations to yield tractable problems for fan noise is discussed. The three-dimensional problem is decomposed into several two-dimensional problems. Finally, full details are given of a two-dimensional analysis to predict the amounts of acoustic energy, at the blade passing frequency and its harmonics, radiated up and downstream of a blade row due to its interaction with a neighboring row.


Author(s):  
Radu S. Curiac ◽  
Sumit Singhal

Noise in large high voltage induction motors (500Hp–18000Hp) may be airborne or magnetic in nature. Usually, large high voltage induction motors are custom built and tailored to meet customer’s demand. Since every motor is unique in its design, it is imperative to predict accurately the magnetic noise generation during design phase, this way avoiding expensive rework cost and not loosing the customer confidence. Stator – rotor mechanical design, along with careful electrical coil design, can significantly cut down magnetic noise in an induction motor. This paper discusses the various causes and control of magnetic noise in large induction motors. Theoretical noise predictions in large induction motors, along with measured experimental noise data, are presented.


Author(s):  
Dragos¸ Moroianu ◽  
Arne Karlsson ◽  
Laszlo Fuchs

An important component of the aircraft generated noise, especially ahead of it, is the fan noise created by the high velocity variation near the blades and the interaction of the rotating fan with the fluid. In order to predict the sound, the method used involves the acoustical analogy developed by Ffowcs Williams and Hawkings. Computation of the flow field is performed in the incompressible LES framework, while the noise is evaluated using a non-homogeneous wave equation. In this work the influence of the angle between the fan and ground, on the total sound spectrum, the noise generation and the noise propagation is investigated. It is found that the near field is dominated by the blade passage frequency and an upward inclination of the fan will produce a slightly different sound pressure level than a horizontal or downward inclination.


Sign in / Sign up

Export Citation Format

Share Document