Density Profiles and Entropy Production in Cylindrical Couette Flow: Comparison of Generalized Hydrodynamics and Monte Carlo Results

2002 ◽  
Vol 457 ◽  
pp. 377-409 ◽  
Author(s):  
L. SRINIVASA MOHAN ◽  
K. KESAVA RAO ◽  
PRABHU R. NOTT

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and the angular velocity of a material point may differ from half the local vorticity. An important consequence of treating the granular medium as a Cosserat continuum is that it incorporates a material length scale in the model, which is absent in frictional models based on a classical continuum. Further, the Cosserat model allows determination of the velocity fields uniquely in viscometric flows, in contrast to classical frictional models. Experiments on viscometric flows of dense, slowly deforming granular materials indicate that shear is confined to a narrow region, usually a few grain diameters thick, while the remaining material is largely undeformed. This feature is captured by the present model, and the velocity profile predicted for cylindrical Couette flow is in good agreement with reported data. When the walls of the Couette cell are smoother than the granular material, the model predicts that the shear layer thickness is independent of the Couette gap H when the latter is large compared to the grain diameter dp. When the walls are of the same roughness as the granular material, the model predicts that the shear layer thickness varies as (H/dp)1/3 (in the limit H/dp [Gt ] 1) for plane shear under gravity and cylindrical Couette flow.


Langmuir ◽  
2018 ◽  
Vol 34 (50) ◽  
pp. 15403-15415 ◽  
Author(s):  
Marian Cors ◽  
Lars Wiehemeier ◽  
Yvonne Hertle ◽  
Artem Feoktystov ◽  
Fabrice Cousin ◽  
...  

2000 ◽  
Vol 12 (11) ◽  
pp. 3060 ◽  
Author(s):  
José Marı́a Montanero ◽  
Andrés Santos ◽  
Vicente Garzó

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Luís Simão Ferreira

<p style='text-indent:20px;'>In this paper, we proceed as suggested in the final section of [<xref ref-type="bibr" rid="b2">2</xref>] and prove a lower bound for the spectral gap of the conjugate Kac process with 3 interacting particles. This bound turns out to be around <inline-formula><tex-math id="M1">\begin{document}$ 0.02 $\end{document}</tex-math></inline-formula>, which is already physically meaningful, and we perform Monte Carlo simulations to provide a better empirical estimate for this value via entropy production inequalities. This finishes a complete quantitative estimate of the spectral gap of the Kac process.</p>


2018 ◽  
Vol 162 ◽  
pp. 83-89 ◽  
Author(s):  
Marguerite Bienia ◽  
Cyril Danglade ◽  
André Lecomte ◽  
Julien Brevier ◽  
Cécile Pagnoux

Sign in / Sign up

Export Citation Format

Share Document