An experimental investigation of a two-dimensional, self-similar, supersonic turbulent mixing layer with zero pressure gradient

Author(s):  
H. IKAWA ◽  
T. KUBOTA
2007 ◽  
Vol 589 ◽  
pp. 479-507 ◽  
Author(s):  
E. KIT ◽  
I. WYGNANSKI ◽  
D. FRIEDMAN ◽  
O. KRIVONOSOVA ◽  
D. ZHILENKO

The flow in a turbulent mixing layer resulting from two parallel different velocity streams, that were brought together downstream of a jagged partition was investigated experimentally. The trailing edge of the partition had a short triangular ‘chevron’ shape that could also oscillate up and down at a prescribed frequency, because it was hinged to the stationary part of the partition to form a flap (fliperon). The results obtained from this excitation were compared to the traditional results obtained by oscillating a two-dimensional fliperon. Detailed measurements of the mean flow and the coherent structures, in the periodically excited and spatially developing mixing layer, and its random constituents were carried out using hot-wire anemometry and stereo particle image velocimetry.The prescribed spanwise wavelength of the chevron trailing edge generated coherent streamwise vortices while the periodic oscillation of this fliperon locked in-phase the large spanwise Kelvin–Helmholtz (K-H) rolls, therefore enabling the study of the inter- action between the two. The two-dimensional periodic excitation increases the strength of the spanwise rolls by increasing their size and their circulation, which depends on the input amplitude and frequency. The streamwise vortices generated by the jagged trailing edge distort and bend the primary K-H rolls. The present investigation endeavours to study the distortions of each mode as a consequence of their mutual interaction. Even the mean flow provides evidence for the local bulging of the large spanwise rolls because the integral width (the momentum thickness, θ), undulates along the span. The lateral location of the centre of the ensuing mixing layer (the location where the mean velocity is the arithmetic average of the two streams,y0), also suggests that these vortices are bent. Phase-locked and ensemble-averaged measurements provide more detailed information about the bending and bulging of the large eddies that ensue downstream of the oscillating chevron fliperon. The experiments were carried out at low speeds, but at sufficiently high Reynolds number to ensure naturally turbulent flow.


1984 ◽  
Vol 139 ◽  
pp. 29-65 ◽  
Author(s):  
G. M. Corcos ◽  
F. S. Sherman

The prevalence in a turbulent mixing layer of dynamical events with a coherent history over substantial times suggests that it is profitable to study in detail entirely deterministic versions of this flow and to attempt to use a simplified synthesis of these solutions as the fundamental representation in a stochastic treatment of the layer. It is proposed that the deterministic representation of the flow be achieved by the embedding of a short hierarchy of motions which are studied in detail, though not exhaustively, in Parts 1, 2 and 3. Part 1 deals with the fundamental or first-order motion, which is the evolution of a layer constrained to be purely two-dimensional.


1990 ◽  
Vol 56 (528) ◽  
pp. 2189-2197 ◽  
Author(s):  
Akito ANDO ◽  
Hiroaki SADATA ◽  
Koichi HISHIDA ◽  
Masanobu MAEDA

1994 ◽  
Vol 260 ◽  
pp. 81-94 ◽  
Author(s):  
J. Cohen ◽  
B. Marasli ◽  
V. Levinski

The nonlinear interaction between the mean flow and a coherent disturbance in a two-dimensional turbulent mixing layer is addressed. Based on considerations from stability theory, previous experimental results, in particular the modification of the mean velocity profile, the peculiar growth of the forced shear-layer thickness and the spatial growth of the disturbance amplitude, are explained. A model that assumes a quasi-parallel mean flow having a self-similar mean velocity profile is developed. The model is capable of predicting the downstream evolution of turbulent mixing layers subjected to external excitations.


Sign in / Sign up

Export Citation Format

Share Document