On the periodically excited plane turbulent mixing layer, emanating from a jagged partition

2007 ◽  
Vol 589 ◽  
pp. 479-507 ◽  
Author(s):  
E. KIT ◽  
I. WYGNANSKI ◽  
D. FRIEDMAN ◽  
O. KRIVONOSOVA ◽  
D. ZHILENKO

The flow in a turbulent mixing layer resulting from two parallel different velocity streams, that were brought together downstream of a jagged partition was investigated experimentally. The trailing edge of the partition had a short triangular ‘chevron’ shape that could also oscillate up and down at a prescribed frequency, because it was hinged to the stationary part of the partition to form a flap (fliperon). The results obtained from this excitation were compared to the traditional results obtained by oscillating a two-dimensional fliperon. Detailed measurements of the mean flow and the coherent structures, in the periodically excited and spatially developing mixing layer, and its random constituents were carried out using hot-wire anemometry and stereo particle image velocimetry.The prescribed spanwise wavelength of the chevron trailing edge generated coherent streamwise vortices while the periodic oscillation of this fliperon locked in-phase the large spanwise Kelvin–Helmholtz (K-H) rolls, therefore enabling the study of the inter- action between the two. The two-dimensional periodic excitation increases the strength of the spanwise rolls by increasing their size and their circulation, which depends on the input amplitude and frequency. The streamwise vortices generated by the jagged trailing edge distort and bend the primary K-H rolls. The present investigation endeavours to study the distortions of each mode as a consequence of their mutual interaction. Even the mean flow provides evidence for the local bulging of the large spanwise rolls because the integral width (the momentum thickness, θ), undulates along the span. The lateral location of the centre of the ensuing mixing layer (the location where the mean velocity is the arithmetic average of the two streams,y0), also suggests that these vortices are bent. Phase-locked and ensemble-averaged measurements provide more detailed information about the bending and bulging of the large eddies that ensue downstream of the oscillating chevron fliperon. The experiments were carried out at low speeds, but at sufficiently high Reynolds number to ensure naturally turbulent flow.

1994 ◽  
Vol 260 ◽  
pp. 81-94 ◽  
Author(s):  
J. Cohen ◽  
B. Marasli ◽  
V. Levinski

The nonlinear interaction between the mean flow and a coherent disturbance in a two-dimensional turbulent mixing layer is addressed. Based on considerations from stability theory, previous experimental results, in particular the modification of the mean velocity profile, the peculiar growth of the forced shear-layer thickness and the spatial growth of the disturbance amplitude, are explained. A model that assumes a quasi-parallel mean flow having a self-similar mean velocity profile is developed. The model is capable of predicting the downstream evolution of turbulent mixing layers subjected to external excitations.


1975 ◽  
Vol 69 (3) ◽  
pp. 465-473 ◽  
Author(s):  
D. W. Moore ◽  
P. G. Saffman

It is argued on the basis of exact solutions for uniform vortices in straining fields that vortices of finite cross-section in a row will disintegrate if the spacing is too small. The results are applied to the organized vortex structures observed in turbulent mixing layers. An explanation is provided for the disappearance of these structures as they move downstream and it is deduced that the ratio of average spacing to width should be about 3·5, the width being defined by the maximum slope of the mean velocity. It is shown in an appendix that walls have negligible effect.


1982 ◽  
Vol 123 ◽  
pp. 91-130 ◽  
Author(s):  
D. Oster ◽  
I. Wygnanski

The effect of periodic two-dimensional excitation on the development of a turbulent mixing region was studied experimentally. Controlled oscillations of variable ampli- tude and frequency were applied at the initiation of mixing between two parallel air streams. The frequency of forcing was at least an order of magnitude lower than the initial instability frequency of the flow in order to test its effect far downstream. The effect of the velocity difference between the streams was also investigated in this experiment. A typical Reynolds number based on the velocity difference and the momentum thickness of the shear layer was l04.It was determined that the spreading rate of the mixing layer is sensitive to periodic surging even if the latter is so small that it does not contribute to the initial energy of the fluctuations. Oscillations at very small amplitudes tend to increase the spreading rate of the flow by enhancing the amalgamation of neighbouring eddies, but at higher amplitudes the flow resonates with the imposed oscillation. The resonance region can extend over a significant fraction of the test section depending on the Strouhal number and a dimensionless velocity-difference parameter. The flow in the resonance region consists of a single array of large, quasi-two-dimensional vortex lumps, which do not interact with one another. The exponential shape of the mean-velocity distribution is not affected in this region, but the spreading rate of the flow with increasing distance downstream is inhibited. The Reynolds stress in this region changes sign, indicating that energy is extracted from the turbulence to the mean motion; the intensity of the spanwise fluctuations is also reduced, suggesting that the flow tends to become more two-dimensional.Amalgamation of large coherent eddies is resumed beyond the resonance region, but the flow is not universally similar. There are many indications suggesting that the large eddies in the turbulent mixing layer at fairly large Re are governed by an inviscid instability.


1999 ◽  
Vol 390 ◽  
pp. 325-348 ◽  
Author(s):  
S. NAZARENKO ◽  
N. K.-R. KEVLAHAN ◽  
B. DUBRULLE

A WKB method is used to extend RDT (rapid distortion theory) to initially inhomogeneous turbulence and unsteady mean flows. The WKB equations describe turbulence wavepackets which are transported by the mean velocity and have wavenumbers which evolve due to the mean strain. The turbulence also modifies the mean flow and generates large-scale vorticity via the averaged Reynolds stress tensor. The theory is applied to Taylor's four-roller flow in order to explain the experimentally observed reduction in the mean strain. The strain reduction occurs due to the formation of a large-scale vortex quadrupole structure from the turbulent spot confined by the four rollers. Both turbulence inhomogeneity and three-dimensionality are shown to be important for this effect. If the initially isotropic turbulence is either homogeneous in space or two-dimensional, it has no effect on the large-scale strain. Furthermore, the turbulent kinetic energy is conserved in the two-dimensional case, which has important consequences for the theory of two-dimensional turbulence. The analytical and numerical results presented here are in good qualitative agreement with experiment.


1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


2005 ◽  
Vol 127 (4) ◽  
pp. 388-392 ◽  
Author(s):  
G. Medic ◽  
P. A. Durbin

It is shown how natural and forced unsteadiness play a major role in turbine blade trailing edge cooling flows. Reynolds averaged simulations are presented for a surface jet in coflow, resembling the geometry of the pressure side breakout on a turbine blade. Steady computations show very effective cooling; however, when natural—or even moreso, forced—unsteadiness is allowed, the adiabatic effectiveness decreases substantially. Streamwise vortices in the mean flow are found to be the cause of the increased heat transfer.


1985 ◽  
Vol 150 ◽  
pp. 23-39 ◽  
Author(s):  
M. Gaster ◽  
E. Kit ◽  
I. Wygnanski

The large-scale structures that occur in a forced turbulent mixing layer at moderately high Reynolds numbers have been modelled by linear inviscid stability theory incorporating first-order corrections for slow spatial variations of the mean flow. The perturbation stream function for a spatially growing time-periodic travelling wave has been numerically evaluated for the measured linearly diverging mean flow. In an accompanying experiment periodic oscillations were imposed on the turbulent mixing layer by the motion of a small flap at the trailing edge of the splitter plate that separated the two uniform streams of different velocity. The results of the numerical computations are compared with experimental measurements.When the comparison between experimental data and the computational model was made on a purely local basis, agreement in both the amplitude and phase distribution across the mixing layer was excellent. Comparisons on a global scale revealed, not unexpectedly, less good accuracy in predicting the overall amplification.


Sign in / Sign up

Export Citation Format

Share Document