Simulation of Skylab orbit decay and attitude dynamics

Author(s):  
M. KAPLAN ◽  
D. CWYNAR ◽  
S. ALEXANDER
1979 ◽  
Vol 2 (6) ◽  
pp. 511-516 ◽  
Author(s):  
Marshall H. Kaplan ◽  
David J. Cwynar ◽  
Stephen G. Alexander

2021 ◽  
pp. 107754632199015
Author(s):  
Mohammad Mahdi Ataei ◽  
Hassan Salarieh ◽  
Hossein Nejat Pishkenari ◽  
Hadi Jalili

A novel partial differential equation observer is proposed to be used in boundary attitude and vibration control of flexible satellites. Solar panels’ vibrations and attitude dynamics form a coupled partial differential equation–ordinary differential equation system which is controlled directly without discretization. Few feedback signals from boundaries are required which are estimated via a partial differential equation observer. Consequently, just satellite attitude and angular velocity should be measured and still the control system benefits information from continuous part vibrations. The closed-loop system is proved to be asymptotically stable. Simulations with a finite element technique illustrate good performance of this observer-based boundary controller.


2012 ◽  
Vol 225 ◽  
pp. 411-416 ◽  
Author(s):  
Aaron Aw Teik Hong ◽  
Renuganth Varatharajoo

Tethered Satellite Systems (TSS) have been used in various applications such as in performing space interferometry, orbit transfer and other relevant fields. As far as the operation system of a TSS is concerned, it is crucial to ensure that the tether will not go slack as its slackness would adversely affects the overall operation outcome due to an undesirable system dynamics. Therefore, it is important to investigate the types of conditions that will cause the tether slackness. Investigations on in-plane and out-of plane libration angles can be utilized to measure at what point that the tether will go slack. Based on previous research works, usually a rigid tether comprising of a uniformed mass is considered while the connecting two satellites are regarded as point masses in order to simplify the governing dynamics equation of motion. However, in order to develop a much more accurate modeling, a flexible tether is chosen by further incorporating the reeling mechanism, attitude dynamics of rigid bodies and tether deformations. Furthermore, a tether has a tendency to go slack if the in-plane and out-of plane libration angle exceeds 65° and 60° respectively regardless of the types of tether utilized whether it being a rigid or a flexible one. Thus, the tension of the tether will serves as a constraint and plotted against the in-plane and out-of plane libration motions that would be attained via the generalized forces. The results will then be analyzed to establish in-plane and out-of plane libration boundaries. Subsequently, the in-plane and out-of plane operation contrains are established for TSS corresponding to a reference mission.


Author(s):  
M.Yu. Ovchinnikov ◽  
A.A. Ilyin ◽  
N.V. Kupriynova ◽  
V.I. Penkov ◽  
A.S. Selivanov
Keyword(s):  

Author(s):  
A Burov ◽  
I Kosenko

Planar motion of an orbiting body having a variable mass distribution in a central field of gravity is under analysis. Within the so-called ‘satellite approximation’ planar attitude dynamics is reduced to the 3/2-degrees of freedom description by one ODE of second order. The law of the mass distribution variations implying an existence of the special relative equilibria, such that the body is oriented pointing to the attracting centre by the same axis for any value of the orbit eccentricity is indicated. For particular example of an orbiting dumb-bell equipped by a massive cabin, wandering between the ends of the dumb-bell. For this example stability of the equilibria such that the dumb-bell ‘points to’ the attracting centre by one of its ends is studied. The chaoticity of global dynamics is investigated. Two important examples of a vibrating dumb-bell and of a dumb-bell equipped by a cabin wandering between its endpoints are considered. The dynamics of space objects, including moving elements, has been investigated by many authors. These studies usually have been connected with the necessity to estimate the influence of relative motions of moving parts, for example, crew motions [ 1 , 2 ], circulation of liquids [ 3 ], etc. on the attitude dynamics of a spacecraft. The development of projects of large-scale space systems with mobile elements, in particular, of satellite systems with tethered elements and space elevators, has posed problems related to their dynamics. Various aspects of the role of mass distribution even for the simplest orbiting systems, like dumb-bell systems are known since the publications [ 4 – 7 ], etc. The possibility of the sudden loss of stability because of the mass redistribution has been pointed out in reference [ 8 ] (see also references [ 9 – 13 ]). The considered system belongs to the mentioned class of systems and represents by itself one of the simplest systems allowing both analytical and numerical treatment, without supplementary simplifying assumptions such as smallness of the orbital eccentricity. Another set of applied problems is related to orientation keeping of the system for deployment and retrieval of tethered subsatellites as well as for relative cabin motions of space elevators. In particular, the problem of the stabilization/destabilization possibility for the given state of motion due to rapid oscillations of the cabin exists. This could be the subject of another additional investigation.


ARS Journal ◽  
1962 ◽  
Vol 32 (12) ◽  
pp. 1876-1881 ◽  
Author(s):  
W. D. PARSONS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document