Singular perturbation techniques for on-line optimal flight path control

Author(s):  
A. CALISE
Author(s):  
Penglei Zhao ◽  
Wanchun Chen ◽  
Wenbin Yu

This paper presents the design of a singular-perturbation-based optimal guidance with constraints on terminal flight-path angle and angle of attack. By modeling the flight-control system dynamics as a first-order system, the angle of attack is introduced into the performance index as a state variable. To solve the resulting high-order optimal guidance problem analytically, the posed optimal guidance problem is divided into two sub-problems by utilizing the singular perturbation method according to two time scales: range, altitude, and flight-path angle are the slow time-scale variables while the angle of attack is the fast time-scale variable. The outer solutions are the optimal control of the slow-scale subsystem. Thereafter, by applying the stretching transformation, the fast-scale subsystem establishes the relationships between the outer solutions and acceleration command. Then, the optimal command can be obtained by solving the fast-scale subsystem also using the optimal control theory. The proposed guidance can achieve a near-zero terminal acceleration as well as a small miss distance. The superior performance of the guidance is demonstrated by adequate trajectory simulations.


1991 ◽  
Vol 233 ◽  
pp. 519-537 ◽  
Author(s):  
S. B. G. O'Brien

The problem of obtaining asymptotic expressions describing the shape of small sessile and pendant drops is revisited. Both cases display boundary-layer behaviour and the method of matched asymptotic expansions is used to obtain solutions. These give good agreement when compared with numerical results. The sessile solutions are relatively straightforward, while the pendant drop displays a behaviour which is both rich and interesting.


Sign in / Sign up

Export Citation Format

Share Document