On the validity of the modified equation approach to the stability analysis of finite-difference methods

1987 ◽  
Author(s):  
SIN-CHUNG CHANG
Author(s):  
Olufemi Bosede ◽  
Ashiribo Wusu ◽  
Moses Akanbi

Mathematical modeling of scientific and engineering processes often yield Boundary Value Problems (BVPs). One of the broad categories of numerical methods for solving BVPs is the finite difference methods, in which the differential equation is replaced by a set of difference equations which are solved by direct or iterative methods. In this paper, we use some properties of matrices to analyze the stability and convergence of the prominent finite difference methods - two-step Obrechkoff method - for solving the boundary value problem $u^{\prime \prime} = f(t,u)$, $a < x < b$, $u(a) = \eta_1$, $u(b) = \eta_2$. Conditions for the stability and convergence of the two-step Obrechkoff method method were established.


1993 ◽  
Vol 01 (02) ◽  
pp. 151-184 ◽  
Author(s):  
TAO LIN

In this paper, we discuss the interface problems arising in using finite difference methods to solve hyperbolic equations with discontinuous coefficients. The schemes developed here can be used to handle four important types of numerical interfaces due to: (1) the discontinuity of the coefficients of the PDE, (2) using artificial boundary, (3) using different finite difference formulae in different areas, and (4) using different grid sizes in different areas. Stability analysis for these schemes is carried out in terms of conventional l1, l2, and l∞ norms so that the convergence rates of these schemes are obtained. Several numerical examples are supplied to demonstrate properties of these schemes.


2017 ◽  
Vol 13 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Yusuf Ucar ◽  
Nuri Murat Yagmurlu ◽  
Orkun Tasbozan

Abstract In this study, a numerical solution of the modified Burgers’ equation is obtained by the finite difference methods. For the solution process, two linearization techniques have been applied to get over the non-linear term existing in the equation. Then, some comparisons have been made between the obtained results and those available in the literature. Furthermore, the error norms L2 and L∞ are computed and found to be sufficiently small and compatible with others in the literature. The stability analysis of the linearized finite difference equations obtained by two different linearization techniques has been separately conducted via Fourier stability analysis method.


2021 ◽  
Vol 70 ◽  
pp. 124-136
Author(s):  
Firas Dhaouadi ◽  
Emilie Duval ◽  
Sergey Tkachenko ◽  
Jean-Paul Vila

In this paper, we discuss some limitations of the modified equations approach as a tool for stability analysis for a class of explicit linear schemes to scalar partial differential equations. We show that the infinite series obtained by Fourier transform of the modified equation is not always convergent and that in the case of divergence, it becomes unrelated to the scheme. Based on these results, we explain when the stability analysis of a given truncation of a modified equation may yield a reasonable estimation of a stability condition for the associated scheme. We illustrate our analysis by some examples of schemes namely for the heat equation and the transport equation.


Sign in / Sign up

Export Citation Format

Share Document