Variability of local stress states resulting from the application of Monte Carlo and finite difference methods to the stability study of a selected slope

2018 ◽  
Vol 245 ◽  
pp. 370-389 ◽  
Author(s):  
Antonio Pasculli ◽  
Monia Calista ◽  
Nicola Sciarra
Author(s):  
Olufemi Bosede ◽  
Ashiribo Wusu ◽  
Moses Akanbi

Mathematical modeling of scientific and engineering processes often yield Boundary Value Problems (BVPs). One of the broad categories of numerical methods for solving BVPs is the finite difference methods, in which the differential equation is replaced by a set of difference equations which are solved by direct or iterative methods. In this paper, we use some properties of matrices to analyze the stability and convergence of the prominent finite difference methods - two-step Obrechkoff method - for solving the boundary value problem $u^{\prime \prime} = f(t,u)$, $a < x < b$, $u(a) = \eta_1$, $u(b) = \eta_2$. Conditions for the stability and convergence of the two-step Obrechkoff method method were established.


Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 214
Author(s):  
Adebayo Abiodun Aderogba ◽  
Appanah Rao Appadu

We construct three finite difference methods to solve a linearized Korteweg–de-Vries (KdV) equation with advective and dispersive terms and specified initial and boundary conditions. Two numerical experiments are considered; case 1 is when the coefficient of advection is greater than the coefficient of dispersion, while case 2 is when the coefficient of dispersion is greater than the coefficient of advection. The three finite difference methods constructed include classical, multisymplectic and a modified explicit scheme. We obtain the stability region and study the consistency and dispersion properties of the various finite difference methods for the two cases. This is one of the rare papers that analyse dispersive properties of methods for dispersive partial differential equations. The performance of the schemes are gauged over short and long propagation times. Absolute and relative errors are computed at a given time at the spatial nodes used.


Sign in / Sign up

Export Citation Format

Share Document