Rise-time response of nickel-foil-on-Kapton-substrate, hot-film, shear-stress sensors

Author(s):  
DANIEL REDA
Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 305 ◽  
Author(s):  
Jin-Jin Wang ◽  
Hong Hu ◽  
Chao-Zhan Chen

This paper presents a study to determine the effect of sensor dimensions (length, width, and thickness) on the performance of flexible hot film shear stress sensors. The sensing component of a hot film sensor is nickel thermistor, and the flexible substrate material is polyimide. Several groups of flexible hot film shear stress sensors with different lengths, widths, and thicknesses were studied. The temperature coefficient of resistance (TCR) was measured. The TCR increased slightly with increasing thickness. The frequency response (time constant) of the flexible hot film shear stress sensor was obtained by the square wave, while the sensitivity was tested in a wind tunnel. The study found that as the sensor length was shortened, the frequency response increased, and the sensitivity decreased.


AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 66-72
Author(s):  
Tao Pan ◽  
Daniel Hyman ◽  
Mehran Mehregany ◽  
Eli Reshotko ◽  
Steven Garverick

AIAA Journal ◽  
2002 ◽  
Vol 40 (8) ◽  
pp. 1582-1588 ◽  
Author(s):  
Mehul P. Patel ◽  
Eli Reshotko ◽  
Daniel Hyman

Author(s):  
Risa Robinson ◽  
Lynn Fuller ◽  
Harvey Palmer ◽  
Mary Frame

Blood flow regulation in the microvascular network has been investigated by means of computational fluid dynamics, in vivo particle tracking and microchannel models. It is evident from these studies that shear stress along the wall is a key factor in the communication network that results in blood flow modification, yet current methods for shear stress determination are acknowledged to be imprecise. Micromachining technology allows for the development of implantable shear stress sensors that will enable us to monitor wall shear stress at multiple locations in arteriole bifurcations. In this study, a microchannel was employed as an in vitro model of a microvessel. Thermal shear stress sensors were used to mimic the endothelial cells that line the vessel wall. A three dimensional computational model was created to simulate the system’s thermal response to the constant temperature control circuit and related wall shear stress. The model geometry included a silicon wafer section with all the fabrication layers — silicon dioxide, poly silicon resistor, silicon nitride — and a microchannel with cross section 17 μm × 17 μm. This computational technique was used to optimize the dimensions of the system for a 0.01 Reynolds number flow at room temperature in order to reduce the amount of heat lost to the substrate and to predict and maximize the signal response. Results of the design optimization are presented and the fabrication process discussed.


Sign in / Sign up

Export Citation Format

Share Document