An experimental investigation into the transonic flow-fields of tandem cavities

1998 ◽  
Author(s):  
D. Bray
2000 ◽  
Vol 9 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Katsumi Shimamoto ◽  
Shigeru Matsuo ◽  
Toshiaki Setoguchi

Energy ◽  
2020 ◽  
pp. 119313
Author(s):  
Aezid-Ul-Hassan Najmi ◽  
Ikechukwu S. Anyanwu ◽  
Xu Xie ◽  
Zhi Liu ◽  
Kui Jiao

1976 ◽  
Vol 98 (4) ◽  
pp. 592-606 ◽  
Author(s):  
David Japikse

Progress achieved in numerical analysis during the past decade now permits the turbo-machinery designer to carry out a wide variety of inviscid, steady flow, two-dimensional calculations for compressible sybsonic and transonic flow fields, including some strongly diffusing flows. Three-dimensional (including viscosity) calculations are under development and should find wide spread use as analysis tools during the next decade. This review offers an introduction to recent advances in numerical turbomachinery design methods guided by the author’s design usage of several of the techniques reported.


Author(s):  
Ju Luo ◽  
Jun Hu ◽  
Zhiqiang Wang ◽  
Baofeng Tu

This paper presents experimental investigation conducted on a 2-stage low speed axial research compressor with cantilevered stator vanes. Flow fields at four different axial locations in the radial stacking and bowed stator passage were measured at maximum flow point and near stall point using 4 five-hole pressure probes. The aim of the work is to study the effects of the bowed stators with hub clearance on the flow field of compressor blade passage. The investigations were conducted with the first stage of the compressor. The hub clearances of both original and bowed stators are 1.1% of span. The results show that the scale of the separation vortex, the hub leakage vortex and the lower passage vortex in the bowed blade passage becomes much smaller and the hub leakage vortex is closer to the suction side at near stall point, which causes a much smaller mixing loss in the blade passage.


Sign in / Sign up

Export Citation Format

Share Document