Explicit equations of motion for constrained mechanical systems and new directions in the control of nonlinear systems

2000 ◽  
Author(s):  
Firdaus Udwadia
2000 ◽  
Vol 68 (3) ◽  
pp. 462-467 ◽  
Author(s):  
F. E. Udwadia ◽  
R. E. Kalaba

Since its inception about 200 years ago, Lagrangian mechanics has been based upon the Principle of D’Alembert. There are, however, many physical situations where this confining principle is not suitable, and the constraint forces do work. To date, such situations are excluded from general Lagrangian formulations. This paper releases Lagrangian mechanics from this confinement, by generalizing D’Alembert’s principle, and presents the explicit equations of motion for constrained mechanical systems in which the constraints are nonideal. These equations lead to a simple and new fundamental view of Lagrangian mechanics. They provide a geometrical understanding of constrained motion, and they highlight the simplicity with which Nature seems to operate.


Author(s):  
Firdaus E Udwadia ◽  
Phailaung Phohomsiri

We present the new, general, explicit form of the equations of motion for constrained mechanical systems applicable to systems with singular mass matrices. The systems may have holonomic and/or non-holonomic constraints, which may or may not satisfy D'Alembert's principle at each instant of time. The equation provides new insights into the behaviour of constrained motion and opens up new ways of modelling complex multi-body systems. Examples are provided and applications of the equation to such systems are illustrated.


2002 ◽  
Vol 69 (3) ◽  
pp. 335-339 ◽  
Author(s):  
F. E. Udwadia ◽  
R. E. Kalaba

This paper presents the general form of the explicit equations of motion for mechanical systems. The systems may have holonomic and/or nonholonomic constraints, and the constraint forces may or may not satisfy D’Alembert’s principle at each instant of time. The explicit equations lead to new fundamental principles of analytical mechanics.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


Author(s):  
E. Bayo ◽  
J. M. Jimenez

Abstract We investigate in this paper the different approaches that can be derived from the use of the Hamiltonian or canonical equations of motion for constrained mechanical systems with the intention of responding to the question of whether the use of these equations leads to more efficient and stable numerical algorithms than those coming from acceleration based formalisms. In this process, we propose a new penalty based canonical description of the equations of motion of constrained mechanical systems. This technique leads to a reduced set of first order ordinary differential equations in terms of the canonical variables with no Lagrange’s multipliers involved in the equations. This method shows a clear advantage over the previously proposed acceleration based formulation, in terms of numerical efficiency. In addition, we examine the use of the canonical equations based on independent coordinates, and conclude that in this second case the use of the acceleration based formulation is more advantageous than the canonical counterpart.


2004 ◽  
Vol 71 (5) ◽  
pp. 615-621 ◽  
Author(s):  
Firdaus E. Udwadia ◽  
Robert E. Kalaba ◽  
Phailaung Phohomsiri

In this paper we obtain the explicit equations of motion for mechanical systems under nonideal constraints without the use of generalized inverses. The new set of equations is shown to be equivalent to that obtained using generalized inverses. Examples demonstrating the use of the general equations are provided.


Author(s):  
Elias Paraskevopoulos ◽  
Sotirios Natsiavas

An investigation is carried out for deriving conditions on the correct application of Newton’s law of motion to mechanical systems subjected to constraints. It utilizes some fundamental concepts of differential geometry and treats both holonomic and anholonomic constraints. The focus is on establishment of conditions, so that the form of Newton’s law remains invariant when imposing an additional set of motion constraints on a system. Based on this requirement, two conditions are derived, specifying the metric and the form of the connection on the new manifold. The latter is weaker than a similar condition employed frequently in the literature, but holding on Riemannian manifolds only. This is shown to have several practical implications. First, it provides a valuable freedom for selecting the connection on the manifold describing large rigid body rotation, so that the group properties of this manifold are preserved. Moreover, it is used to state clearly the conditions for expressing Newton’s law on the tangent space (and not on the dual space) of a manifold. Finally, the Euler-Lagrange operator is examined and issues related to equations of motion for anholonomic and vakonomic systems are investigated.


Sign in / Sign up

Export Citation Format

Share Document