Validation of Payload Acoustic Model Based on Acoustic Test Results

Author(s):  
Y. T. Chung ◽  
Brian Foist ◽  
Michelle Sernaker
2011 ◽  
Vol 97-98 ◽  
pp. 787-793 ◽  
Author(s):  
Shen Hua Yang ◽  
Guo Quan Chen ◽  
Xing Hua Wang ◽  
Yue Bin Yang

Due to the target ship in the traditional ship handling simulator have not the ability to give way to other ships automatically to avoid collision, this paper put forward a new idea that bringing the hydraulic servo platform, six degrees of freedom ship mathematical model, the actual traffic flow, researching achievement of automatic anti-collision in research of the new pattern ship handling simulator, and successfully develop the Intelligent Ship Handling Simulator(ISHS for short). The paper focuse on the research on the network communication model of ISHS. We took the entire simulator system as three relatively independent networks, proposed a framework of communication network that combined IOCP model based on TCP with blocking model based on UDP, and gave the communication process and protocols of system. Test results indicate that this is an effective way to improve the ownship capacity of ship handling simulator and meet the need of multi-ownship configuration of desktop system of ship handling simulator.


2013 ◽  
Vol 539 ◽  
pp. 44-48
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

As shrinkage in concrete leading to the subsequent cracking and reducing durability, the study on shrinkage is quite important. Based on microstructure of pores obtained from Nitrogen absorption method and mechanical testing, a numerical shrinkage model was built. The standard shrinkage test results show consistent in the blended cement pastes with different water-to-cement ratioand admixture content to predict shrinkage values, which confirmes the shrinkage model based upon microstructure of blended cement pastes.


Author(s):  
Qiang Zhang ◽  
Jun Sang ◽  
Mohammad S. Alam ◽  
Bin Cai ◽  
Li Yang

2019 ◽  
Vol 12 (1) ◽  
pp. 16 ◽  
Author(s):  
Magdalena Tutak

One of the main problems related to the excavation of dog headings in coal beds is the emission of methane during this process. To prevent the occurrence of dangerous concentration levels of this gas, it is necessary to use an appropriate ventilation system. The operation effectiveness of such a system depends on a number of mining, geological, technical and organizational factors. One of them includes the size and permeability of the fractures zone formed around the excavated dog heading. The primary objective of the paper is to determine the influence of this zone on the ventilation parameters, including the concentration and distribution of methane in the excavated dog heading. In order to achieve the assumed objective, multivariate model-based tests were carried out, which reproduce a real-world dog heading. Literature data and test results in actual conditions were used to determine the size and permeability of the fractures zone around the excavated heading. These data served as the basis to develop a model of the region under analysis and adopt boundary conditions. The analyses were carried out for four permeability values of the fractures zone and for two volumetric flow rates of the air stream supplied to the heading. The results were used to determine the influence of the fractures zone on the distribution and concentration of methane in the heading under analysis. The model-based tests were performed using ANSYS Fluent software. The idea to take into account the fractures zone around the heading represents a new approach to the analysis of ventilation parameters in underground mine headings. The results clearly indicate that this zone affects the ventilation parameters in the heading, including the distribution and concentration of methane. The knowledge obtained from the tests should be used to optimize the ventilation process of dog headings. All authors have read and agreed to the published version of the manuscript.


Sign in / Sign up

Export Citation Format

Share Document