A model based method for centering double ball bar test results preventing fictitious ovalization effects

2005 ◽  
Vol 45 (10) ◽  
pp. 1132-1139 ◽  
Author(s):  
S.H.H. Zargarbashi ◽  
J.R.R. Mayer
2011 ◽  
Vol 97-98 ◽  
pp. 787-793 ◽  
Author(s):  
Shen Hua Yang ◽  
Guo Quan Chen ◽  
Xing Hua Wang ◽  
Yue Bin Yang

Due to the target ship in the traditional ship handling simulator have not the ability to give way to other ships automatically to avoid collision, this paper put forward a new idea that bringing the hydraulic servo platform, six degrees of freedom ship mathematical model, the actual traffic flow, researching achievement of automatic anti-collision in research of the new pattern ship handling simulator, and successfully develop the Intelligent Ship Handling Simulator(ISHS for short). The paper focuse on the research on the network communication model of ISHS. We took the entire simulator system as three relatively independent networks, proposed a framework of communication network that combined IOCP model based on TCP with blocking model based on UDP, and gave the communication process and protocols of system. Test results indicate that this is an effective way to improve the ownship capacity of ship handling simulator and meet the need of multi-ownship configuration of desktop system of ship handling simulator.


Author(s):  
Peng Xu ◽  
Benny C. F. Cheung ◽  
Bing Li

Calibration is an important way to improve and guarantee the accuracy of machine tools. This paper presents a systematic approach for position independent geometric errors (PIGEs) calibration of five-axis machine tools based on the product of exponentials (POE) formula. Instead of using 4 × 4 homogeneous transformation matrices (HTMs), it establishes the error model by transforming the 6 × 1 error vectors of rigid bodies between different frames resorting to 6 × 6 adjoint transformation matrices. A stable and efficient error model for the iterative identification of PIGEs should satisfy the requirements of completeness, continuity, and minimality. Since the POE-based error models for five-axis machine tools calibration are naturally complete and continuous, the key issue is to ensure the minimality by eliminating the redundant parameters. Three kinds of redundant parameters, which are caused by joint symmetry information, tool-workpiece metrology, and incomplete measuring data, are illustrated and explained in a geometrically intuitive way. Hence, a straightforward process is presented to select the complete and minimal set of PIGEs for five-axis machine tools. Based on the established unified and compact error Jacobian matrices, observability analyses which quantitatively describe the identification efficiency are conducted and compared for different kinds of tool tip deviations obtained from several commonly used measuring devices, including the laser tracker, R-test, and double ball-bar. Simulations are conducted on a five-axis machine tool to illustrate the application of the calibration model. The effectiveness of the model is also verified by experiments on a five-axis machine tool by using a double ball-bar.


2013 ◽  
Vol 539 ◽  
pp. 44-48
Author(s):  
Yi Chen ◽  
Wu Yao ◽  
Dan Jin

As shrinkage in concrete leading to the subsequent cracking and reducing durability, the study on shrinkage is quite important. Based on microstructure of pores obtained from Nitrogen absorption method and mechanical testing, a numerical shrinkage model was built. The standard shrinkage test results show consistent in the blended cement pastes with different water-to-cement ratioand admixture content to predict shrinkage values, which confirmes the shrinkage model based upon microstructure of blended cement pastes.


Sign in / Sign up

Export Citation Format

Share Document