Field tests of a wind-electric controller for parallel stock water pumping and heating

2002 ◽  
Author(s):  
S. Morton ◽  
J. Nydahl
Keyword(s):  
Author(s):  
Scott A. Morton ◽  
John E. Nydahl

Many of the improvements in wind-electric stock water pumping systems are attributable to advanced controller strategies and hardware that maximize performance over a range of wind speeds. The cost of the early and more complex controllers was of the order of one quarter of the whole system. Sophisticated yet inexpensive-programmable micro-controllers are now being introduced that enhance both performance and reliability. This study utilized a micro-programmable logic controller (PLC) to place a variable auxiliary load in the form of a stock water heater in parallel with the pump motor. This improves the system’s economic viability on the Northern High Plains by mitigating stock tank freezing to help extend the grazing season. For the variable auxiliary load, the PLC uses long period pulse width modulation to drive a 3-phase solid-state relay. This continuously variable load strategy was designed to both increase the power factor when the pump is operating, and to extract resistive heating power in wind regimes not suitable for operating the pump. This paper reports on the preliminary but encouraging field studies directed toward optimizing the low wind speed water heating performance of this multi-tasking controller when the pump motor is inoperable.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 310
Author(s):  
Martyna Świętochowska ◽  
Izabela Bartkowska

Water supply pumping stations are among the main energy-consuming elements in the water supply system. The energy optimization of a pumping station can significantly affect the energy consumption of a water utility. This article deals with the energy optimization of water pumping stations. The work assumes several variants of optimization of water supply pumping stations through changes in the water supply system, pressure changes in the pumping station, and modification of the number of pumps. After analyzing the network, conducting field tests, and creating a model of the water supply network, the network was calibrated in order to reproduce the existing water network as accurately as possible. Then, a variant analysis was performed, and the best optimization method for the pumping station was selected. In two variants, there was a decrease in electricity consumption; in three there, was an increase; in one, there was no change. By connecting the DMA zones and modifying the pressure in the pumping station, the energy consumption of the pumping stations was reduced. On this basis, it was found that it is possible to optimize the water pumping station by modifying the pumping station and work related to the network layout.


Sign in / Sign up

Export Citation Format

Share Document