scholarly journals Airframe Noise Prediction by Acoustic Analogy: Revisited

Author(s):  
F. Farassat ◽  
Jay Casper ◽  
A. Tinetti ◽  
M.H. Dunn
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1095-1098 ◽  
Author(s):  
Jeonghan Lee ◽  
Kyungseok Cho ◽  
Soogab Lee

Author(s):  
Xihai Xu ◽  
Xiaodong Li

An anisotropic component of the jet noise source model for the Reynolds-averaged Navier–Stokes equation-based jet noise prediction method is proposed. The modelling is based on Goldstein's generalized acoustic analogy, and both the fine-scale and large-scale turbulent noise sources are considered. To model the anisotropic characteristics of jet noise source, the Reynolds stress tensor is used in place of the turbulent kinetic energy. The Launder–Reece–Rodi model (LRR), combined with Menter's ω -equation for the length scale, with modified coefficients developed by the present authors, is used to calculate the mean flow velocities and Reynolds stresses accurately. Comparison between predicted results and acoustic data has been carried out to verify the accuracy of the new anisotropic source model. This article is part of the theme issue ‘Frontiers of aeroacoustics research: theory, computation and experiment’.


2011 ◽  
Vol 52-54 ◽  
pp. 1388-1393
Author(s):  
Jun Tao ◽  
Gang Sun ◽  
Ying Hu ◽  
Miao Zhang

In this article, four observation points are selected in the flow field when predicting aerodynamic noise of a multi-element airfoil for both a coarser grid and a finer grid. Numerical simulation of N-S equations is employed to obtain near-field acoustic information, then far-field acoustic information is obtained through acoustic analogy theory combined with FW-H equation. Computation indicates: the codes calculate the flow field in good agreement with the experimental data; The finer the grid is, the more stable the calculated sound pressure level (SPL) is and the more regularly d(SPL)/d(St) varies.


Author(s):  
Ghader Ghorbaniasl ◽  
Charles Hirsch ◽  
Kris Van Den Abeele ◽  
Chris Lacor

2005 ◽  
Vol 4 (1-2) ◽  
pp. 69-91 ◽  
Author(s):  
R. Ewert ◽  
J.W. Delfs ◽  
M. Lummer

The capability of three different perturbation approaches to tackle airframe noise problems is studied. The three approaches represent different levels of complexity and are applied to trailing edge noise problems. In the Euler-perturbation approach the linearized Euler equations without sources are used as governing acoustic equations. The sound generation and propagation is studied for several trailing edge shapes (blunt, sharp, and round trailing edges) by injecting upstream of the trailing edge test vortices into the mean-flow field. The efficiency to generate noise is determined for the trailing edge shapes by comparing the different generated sound intensities due to an initial standard vortex. Mach number scaling laws are determined varying the mean-flow Mach number. In the second simulation approach an extended acoustic analogy based on acoustic perturbation equations (APEs) is applied to simulate trailing edge noise of a flat plate. The acoustic source terms are computed from a synthetic turbulent velocity model. Furthermore, the far field is computed via additional Kirchhoff extrapolation. In the third approach the sources of the extended acoustic analogy are computed from a Large Eddy Simulation (LES) of the compressible flow problem. The directivities due to a modeled and a LES based source, respectively, compare qualitatively well in the near field. In the far field the asymptotic directivities from the Kirchhoff extrapolation agree very well with the analytical solution of Howe. Furthermore, the sound pressure spectra can be shown to have similar shape and magnitude for the last two approaches.


Sign in / Sign up

Export Citation Format

Share Document