scholarly journals Advanced Visualization Techniques for Trade Space Exploration

Author(s):  
John O'Hara ◽  
Gary Stump ◽  
Mike Yukish ◽  
E. Harris ◽  
Gregory Hanowski ◽  
...  
Author(s):  
Dan Carlsen ◽  
Matthew Malone ◽  
Josh Kollat ◽  
Timothy W. Simpson

Trade space exploration is a promising decision-making paradigm that provides a visual and more intuitive means for formulating, adjusting, and ultimately solving design optimization problems. This is achieved by combining multi-dimensional data visualization techniques with visual steering commands to allow designers to “steer” the optimization process while searching for the best, or Pareto optimal, designs. In this paper, we compare the performance of different combinations of visual steering commands implemented by two users to a multi-objective genetic algorithm that is executed “blindly” on the same problem with no human intervention. The results indicate that the visual steering commands — regardless of the combination in which they are invoked — provide a 4x–7x increase in the number of Pareto solutions that are obtained when the human is “in-the-loop” during the optimization process. As such, this study provides the first empirical evidence of the benefits of interactive visualization-based strategies to support engineering design optimization and decision-making. Future work is also discussed.


AI Magazine ◽  
2014 ◽  
Vol 35 (4) ◽  
pp. 61-74 ◽  
Author(s):  
Logan Yliniemi ◽  
Adrian K. Agogino ◽  
Kagan Tumer

Teams of artificially intelligent planetary rovers have tremendous potential for space exploration, allowing for reduced cost, increased flexibility and increased reliability. However, having these multiple autonomous devices acting simultaneously leads to a problem of coordination: to achieve the best results, the they should work together. This is not a simple task. Due to the large distances and harsh environments, a rover must be able to perform a wide variety of tasks with a wide variety of potential teammates in uncertain and unsafe environments. Directly coding all the necessary rules that can reliably handle all of this coordination and uncertainty is problematic. Instead, this article examines tackling this problem through the use of coordinated reinforcement learning: rather than being programmed what to do, the rovers iteratively learn through trial and error to take take actions that lead to high overall system return. To allow for coordination, yet allow each agent to learn and act independently, we employ state-of-the-art reward shaping techniques. This article uses visualization techniques to break down complex performance indicators into an accessible form, and identifies key future research directions.


Author(s):  
R. Bowen Loftin ◽  
Chris Harding ◽  
Dave Chen ◽  
Ching-Rong Lin ◽  
Adrian Ugray ◽  
...  

Author(s):  
David Wolf ◽  
Jennifer Hyland ◽  
Timothy W. Simpson ◽  
Xiaolong (Luke) Zhang

Thanks to recent advances in computing power and speed, engineers can now generate a wealth of data on demand to support design decision-making. These advances have enabled new approaches to search multidimensional trade spaces through interactive data visualization and exploration. In this paper, we investigate the effectiveness and efficiency of interactive trade space exploration strategies by conducting human subject experiments with novice and expert users. A single objective, constrained design optimization problem involving the sizing of an engine combustion chamber is used for this study. Effectiveness is measured by comparing the best feasible design obtained by each user, and efficiency is assessed based on the percentage of feasible designs generated by each user. Results indicate that novices who watch a 5-min training video before the experiment obtain results that are not significantly different from those obtained by expert users, and both groups are statistically better than the novices without the training video in terms of effectiveness and efficiency. Frequency and ordering of the visualization and exploration tools are also compared to understand the differences in each group’s search strategy. The implications of the results are discussed along with future work.


Author(s):  
David Wolf ◽  
Timothy W. Simpson ◽  
Xiaolong Luke Zhang

Thanks to recent advances in computing power and speed, designers can now generate a wealth of data on demand to support engineering design decision-making. Unfortunately, while the ability to generate and store new data continues to grow, methods and tools to support multi-dimensional data exploration have evolved at a much slower pace. Moreover, current methods and tools are often ill-equipped at accommodating evolving knowledge sources and expert-driven exploration that is being enabled by computational thinking. In this paper, we discuss ongoing research that seeks to transform decades-old decision-making paradigms rooted in operations research by considering how to effectively convert data into knowledge that enhances decision-making and leads to better designs. Specifically, we address decision-making within the area of trade space exploration by conducting human-computer interaction studies using multi-dimensional data visualization software that we have been developing. We first discuss a Pilot Study that was conducted to gain insight into expected differences between novice and expert decision-makers using a small test group. We then present the results of two Preliminary Experiments designed to gain insight into procedural differences in how novices and experts use multi-dimensional data visualization and exploration tools and to measure their ability to use these tools effectively when solving an engineering design problem. This work supports our goal of developing training protocols that support efficient and effective trade space exploration.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Mehmet Unal ◽  
Gordon P. Warn ◽  
Timothy W. Simpson

Recent advances in simulation and computation capabilities have enabled designers to model increasingly complex engineering problems, taking into account many dimensions, or objectives, in the problem formulation. Increasing the dimensionality often results in a large trade space, where decision-makers (DM) must identify and negotiate conflicting objectives to select the best designs. Trade space exploration often involves the projection of nondominated solutions, that is, the Pareto front, onto two-objective trade spaces to help identify and negotiate tradeoffs between conflicting objectives. However, as the number of objectives increases, an exhaustive exploration of all of the two-dimensional (2D) Pareto fronts can be inefficient due to a combinatorial increase in objective pairs. Recently, an index was introduced to quantify the shape of a Pareto front without having to visualize the solution set. In this paper, a formal derivation of the Pareto Shape Index is presented and used to support multi-objective trade space exploration. Two approaches for trade space exploration are presented and their advantages are discussed, specifically: (1) using the Pareto shape index for weighting objectives and (2) using the Pareto shape index to rank objective pairs for visualization. By applying the two approaches to two multi-objective problems, the efficiency of using the Pareto shape index for weighting objectives to identify solutions is demonstrated. We also show that using the index to rank objective pairs provides DM with the flexibility to form preferences throughout the process without closely investigating all objective pairs. The limitations and future work are also discussed.


Sign in / Sign up

Export Citation Format

Share Document