Characterization of a Microelectromechanical Systems (MEMS) Microphone

Author(s):  
J. Patrick King ◽  
James Underbrink
2001 ◽  
Vol 687 ◽  
Author(s):  
Jürgen Brünahl ◽  
Alex M. Grishin ◽  
Sergey I. Khartsev ◽  
Carl Österberg

AbstractWe report on comprehensive characterization of piezoelectric shear mode inkjet actuators micromachined into bulk Pb(Zr0.53Ti0.47)O3 (PZT) ceramics. The paper starts with an overview of different inkjet technologies such as continuous jet and drop-on-demand systems, whereat main attention is turned on piezoelectric systems particularly Xaar-type shear mode inkjet color printheads. They are an example of complex microelectromechanical systems (MEMS) and comprise a ferroelectric array of 128 active ink channels (75νm wide and 360νm deep). Detailed information about manufacturing and principles of operation are given. Several techniques to control manufacturing processes and to characterize properties of the piezoelectric material are described: dielectric spectroscopy to measure dielectric permittivity ε and loss tanσ; ferroelectric hysteresis P-E loop tracing to get remnant polarization Pr and coercive field Ec, and a novel pulsed technique to quantify functional properties of the PZT actuator such as acoustic resonant frequencies and electromechanical coupling factor. Stroboscope technique has been employed to find correlation between the degradation of ink-jet performance and heat/high voltage treatment resulting in ferroelectric fatigue.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Sina Hamian ◽  
Andrew M. Gauffreau ◽  
Timothy Walsh ◽  
Jungchul Lee ◽  
Keunhan Park

This paper reports the frequency-dependent electrothermal behaviors of a freestanding doped-silicon heated microcantilever probe operating under periodic (ac) Joule heating. We conducted a frequency-domain finite-element analysis (FEA) and compared the steady periodic solution with 3ω experiment results. The computed thermal transfer function of the cantilever accurately predicts the ac electrothermal behaviors over a full spectrum of operational frequencies, which could not be accomplished with the 1D approximation. In addition, the thermal transfer functions of the cantilever in vacuum and in air were compared, through which the frequency-dependent heat transfer coefficient of the air was quantified. With the developed FEA model, design parameters of the cantilever (i.e., the size and the constriction width of the cantilever heater) and their effects on the ac electrothermal behaviors were carefully investigated. Although this work focused on doped-Si heated microcantilever probes, the developed FEA model can be applied for the ac electrothermal analysis of general microelectromechanical systems.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Lara del Val ◽  
Alberto Izquierdo ◽  
Juan José Villacorta ◽  
Luis Suárez

This paper proposes the use of a signal acquisition and processing system based on an8×8planar array of MEMS (Microelectromechanical Systems) microphones to obtain acoustic images of a fan matrix. A3×3matrix of PC fans has been implemented to perform the study. Some tests to obtain the acoustic images of the individual fans and of the whole matrix have been defined and have been carried out inside an anechoic chamber. The nonstationary signals received by each MEMS microphone and their corresponding spectra have been analyzed, as well as the corresponding acoustic images. The analysis of the acoustic signals spectra reveals the resonance frequency of the individual fans. The obtained results reveal the feasibility of the proposed system to obtained acoustic images of a fan matrix and of its individual fans, in this last case, in order to estimate the real position of the fan inside the matrix.


2020 ◽  
Vol 20 (12) ◽  
pp. 6314-6323 ◽  
Author(s):  
Mehmet Ozdogan ◽  
Shahrzad Towfighian ◽  
Ronald N. Miles
Keyword(s):  

2010 ◽  
Vol 81 (1) ◽  
pp. 015109 ◽  
Author(s):  
A. Adami ◽  
M. Decarli ◽  
R. Bartali ◽  
V. Micheli ◽  
N. Laidani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document