Large Eddy Simulation of Mixing Enhancement of a 2D Supersonic Mixing Layer Induced by Inflow Periodic Temperature Excitation

Author(s):  
MingBo Sun
2014 ◽  
Vol 6 ◽  
pp. 836146 ◽  
Author(s):  
Ren Zhao-Xin ◽  
Wang Bing

Under the background of dual combustor ramjet (DCR), a numerical investigation of supersonic mixing layer was launched, focused on the mixing enhancement method of applying baffles with different geometric configurations. Large eddy simulation with high order schemes, containing a fifth-order hybrid WENO compact scheme for the convective flux and sixth-order compact one for the viscous flux, was utilized to numerically study the development of the supersonic mixing layer. The supersonic cavity flow was simulated and the cavity configuration could influence the mixing characteristics, since the impingement process of large scale structures formed inside the cavity could raise the vorticity and promote the mixing. The effect of baffle's configurations on the mixing process was analyzed by comparing the flow properties, mixing efficiency, and total pressure loss. The baffle could induce large scale vortexes, promote the mixing layer to lose its stability easily, and then lead to the mixing efficiency enhancement. However, the baffle could increase the total pressure loss. The present investigation could provide guidance for applying new passive mixing enhancement methods for the supersonic mixing.


2011 ◽  
Vol 347-353 ◽  
pp. 922-926
Author(s):  
Jin Liang Gu ◽  
Huan Hao Zhang ◽  
Zhi Hua Chen ◽  
Xiao Hai Jiang

Large eddy simulation (LES) has been used to simulate both non-reacting and reacting supersonic planar mixing layers at convective Mach number Mc=0.3. The different eddy characteristics of two cases have been visualized and discussed based on our calculated results, and the differences of mixing layer structures have also been shown, which can provide some important guide for future relative engineering design.


Sign in / Sign up

Export Citation Format

Share Document