Analytical Solution for One-Dimensional Finite Heat Conduction Problem with Heat Balance Integral Method

Author(s):  
Walber Braga ◽  
Marcia Mantelli
2014 ◽  
Vol 698 ◽  
pp. 637-642
Author(s):  
Anton Eremin ◽  
Ekaterina Stefanyuk ◽  
Liubov Abisheva

Using additional boundary conditions in the integral method of the heat balance, an approximate analytical solution to the heat conduction problem for an endless plate with time-varying heat sources has been found. It is shown that with any heat source capacity an unlimited plate temperature increase takes place in the course of time.


2018 ◽  
Vol 8 (3) ◽  
pp. 29-32
Author(s):  
Ol’ga Yu. KURGANOVA

The solution problems of the additional the sought-for function and additional boundary conditions based when using local coordinate systems, an approximate analytical solution of the heat conduction problem for a double-layer plate is obtained for symmetric boundary conditions of the fi rst kind. The use of the additional sought-for function in the integral method of heat balance makes it possible to reduce the solution of the partial diff erential equation to the integration of an ordinary diff erential equation.


2020 ◽  
Vol 19 (1) ◽  
pp. 66
Author(s):  
J. R. F. Oliveira ◽  
J. A. dos Santos Jr. ◽  
J. G. do Nascimento ◽  
S. S. Ribeiro ◽  
G. C. Oliveira ◽  
...  

Through the present work the authors determined the analytical solution of a transient two-dimensional heat conduction problem using Green’s Functions (GF). This method is very useful for solving cases where heat conduction is transient and whose boundary conditions vary with time. Boundary conditions of the problem in question, with rectangular geometry, are of the prescribed temperature type - prescribed flow in the direction x and prescribed flow - prescribed flow in the direction y, implying in the corresponding GF given by GX21Y22. The initial temperature of the space domain is assumed to be different from the prescribed temperature occurring at one of the boundaries along x. The temperature field solution of the two-dimensional problem was determined. The intrinsic verification of this solution was made by comparing the solution of a 1D problem. This was to consider the incident heat fluxes at y = 0 and y = 2b tending to zero, thus making the problem one-dimensional, with corresponding GF given by GX21. When comparing the results obtained in both cases, for a time of t = 1 s, it was seen that the temperature field of both was very similar, which validates the solution obtained for the 2D problem.


1976 ◽  
Vol 98 (3) ◽  
pp. 466-470 ◽  
Author(s):  
A. A. Sfeir

The Heat Balance Integral Method is applied to solve for the heat flow and temperature distribution in extended surfaces of different shapes and boundary conditions. In most cases the analysis is found to be identical to the exact two-dimensional solutions at Biot numbers for which the one-dimensional analysis is almost 100 percent off. Other possible extensions of the method are briefly described.


Sign in / Sign up

Export Citation Format

Share Document