Direct Numerical Simulation of the Turbulent Ekman Layer: Turbulent Energy Budgets

Author(s):  
Stuart Marlatt ◽  
Scottr Waggy ◽  
Sedat Biringen
2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


2012 ◽  
Vol 69 (3) ◽  
pp. 1106-1117 ◽  
Author(s):  
Stuart Marlatt ◽  
Scott Waggy ◽  
Sedat Biringen

Abstract A direct numerical simulation (DNS) at a Reynolds number of 1000 was performed for the neutral atmospheric boundary layer (ABL) using the Ekman layer approximation. The DNS results were used to evaluate several closure approximations that model the turbulent stresses in the Reynolds averaged momentum equations. Two first-order closure equations proposed by O’Brien and by Large, McWilliams, and Doney were tested; both models approximate the eddy diffusivity as a function of height using cubic polynomials. Of these two models, the O’Brien model, which requires data both at the surface layer and at the top of the boundary layer, proved superior. The higher-order k–ɛ model also agreed well with DNS results and more accurately represented the eddy diffusivity in this rotational flow.


2007 ◽  
Vol 574 ◽  
pp. 59-84 ◽  
Author(s):  
SUMAN MUPPIDI ◽  
KRISHNAN MAHESH

Direct numerical simulation is used to study a round turbulent jet in a laminar crossflow. The ratio of bulk jet velocity to free-stream crossflow velocity is 5.7 and the Reynolds number based on the bulk jet velocity and the jet exit diameter is 5000. The mean velocity and turbulent intensities from the simulations are compared to data from the experiments by Su & Mungal (2004) and good agreement is observed. Additional quantities, not available from experiments, are presented. Turbulent kinetic energy budgets are computed for this flow. Examination of the budgets shows that the near field is far from a state of turbulent equilibrium – especially along the jet edges. Also – in the near field – peak kinetic energy production is observed close to the leading edge, while peak dissipation is observed toward the trailing edge of the jet. The results are used to comment upon the difficulty involved in predicting this flow using RANS computations. There exist regions in this flow where the pressure transport term, neglected by some models and poorly modelled by others, is significant. And past the jet exit, the flow is not close to established canonical flows on which most models appear to be based.


2010 ◽  
Vol 655 ◽  
pp. 419-445 ◽  
Author(s):  
L. DUAN ◽  
I. BEEKMAN ◽  
M. P. MARTÍN

In this paper, we perform direct numerical simulation (DNS) of turbulent boundary layers at Mach 5 with the ratio of wall-to-edge temperature Tw/Tδ from 1.0 to 5.4 (Cases M5T1 to M5T5). The influence of wall cooling on Morkovin's scaling, Walz's equation, the standard and modified strong Reynolds analogies, turbulent kinetic energy budgets, compressibility effects and near-wall coherent structures is assessed. We find that many of the scaling relations used to express adiabatic compressible boundary-layer statistics in terms of incompressible boundary layers also hold for non-adiabatic cases. Compressibility effects are enhanced by wall cooling but remain insignificant, and the turbulence dissipation remains primarily solenoidal. Moreover, the variation of near-wall streaks, iso-surface of the swirl strength and hairpin packets with wall temperature demonstrates that cooling the wall increases the coherency of turbulent structures. We present the mechanism by which wall cooling enhances the coherence of turbulence structures, and we provide an explanation of why this mechanism does not represent an exception to the weakly compressible hypothesis.


Sign in / Sign up

Export Citation Format

Share Document