Direct numerical simulation of the turbulent energy balance and the shear stresses in power-law fluid flows in pipes

2017 ◽  
Vol 52 (3) ◽  
pp. 363-374 ◽  
Author(s):  
A. A. Gavrilov ◽  
V. Ya. Rudyak
Author(s):  
S Bair

A thorough characterization of all viscous flow properties relevant to steady simple shear was carried out for five liquid lubricants of current interest to tribology. Shear stresses were generated to values significant to concentrated contact lubrication. Two types of non-Newtonian response were observed: shear-thinning as a power-law fluid and near rate-independence. Functions and parameters were obtained for the temperature and pressure dependence of the viscosity and of the time constant for the Carreau-Yasuda equation. Results are consistent with free volume and kinetic theory, but directly contradict many assumptions currently utilized for numerical simulation and for extracting rheological properties from contact measurements.


2000 ◽  
Author(s):  
B. K. Rao ◽  
J. P. McDevitt ◽  
D. L. Vetter

Abstract Heat transfer and pressure drop were measured for flow of aqueous solutions of Carbopol 934 through a vertical tube filled with porous media. The heated stainless steel test section has an inside diameter of 2.25 cm, and is 200 diameters long. The porosity was varied from 0.32 to 0.68 by using uniform spherical glass beads. Uniform heat flux thermal boundary condition was imposed bypassing direct electric current through the tube wall. Over a range of the parameters: 45 < Rea < 7,000, 21 < Pra < 58, 0.62<n (power-law exponent)<0.80, 0.22 < d/D < 0.6, and the polymer concentration from 250 to 500 parts per million, the friction factor data for power-law fluids agreed with the Newtonian predictions. Heat transfer to power-law fluids increases with increasing Rea and Prw and decreasing porosity. A new correlation was proposed for predicting heat transfer to power-law fluid flows through confined porous media.


2019 ◽  
Vol 877 ◽  
pp. 167-195 ◽  
Author(s):  
Feng-Yuan Zuo ◽  
Antonio Memmolo ◽  
Guo-ping Huang ◽  
Sergio Pirozzoli

Direct numerical simulation of the Navier–Stokes equations is carried out to investigate the interaction of a conical shock wave with a turbulent boundary layer developing over a flat plate at free-stream Mach number $M_{\infty }=2.05$ and Reynolds number $Re_{\unicode[STIX]{x1D703}}\approx 630$, based on the upstream boundary layer momentum thickness. The shock is generated by a circular cone with half opening angle $\unicode[STIX]{x1D703}_{c}=25^{\circ }$. As found in experiments, the wall pressure exhibits a distinctive N-wave signature, with a sharp peak right past the precursor shock generated at the cone apex, followed by an extended zone with favourable pressure gradient, and terminated by the trailing shock associated with recompression in the wake of the cone. The boundary layer behaviour is strongly affected by the imposed pressure gradient. Streaks are suppressed in adverse pressure gradient (APG) zones, but re-form rapidly in downstream favourable pressure gradient (FPG) zones. Three-dimensional mean flow separation is only observed in the first APG region associated with the formation of a horseshoe vortex, whereas the second APG region features an incipient detachment state, with scattered spots of instantaneous reversed flow. As found in canonical geometrically two-dimensional wedge-generated shock–boundary layer interactions, different amplification of the turbulent stress components is observed through the interacting shock system, with approach to an isotropic state in APG regions, and to a two-component anisotropic state in FPG. The general adequacy of the Boussinesq hypothesis is found to predict the spatial organization of the turbulent shear stresses, although different eddy viscosities should be used for each component, as in tensor eddy-viscosity models, or in full Reynolds stress closures.


2019 ◽  
Vol 880 ◽  
pp. 239-283 ◽  
Author(s):  
Christoph Wenzel ◽  
Tobias Gibis ◽  
Markus Kloker ◽  
Ulrich Rist

A direct numerical simulation study of self-similar compressible flat-plate turbulent boundary layers (TBLs) with pressure gradients (PGs) has been performed for inflow Mach numbers of 0.5 and 2.0. All cases are computed with smooth PGs for both favourable and adverse PG distributions (FPG, APG) and thus are akin to experiments using a reflected-wave set-up. The equilibrium character allows for a systematic comparison between sub- and supersonic cases, enabling the isolation of pure PG effects from Mach-number effects and thus an investigation of the validity of common compressibility transformations for compressible PG TBLs. It turned out that the kinematic Rotta–Clauser parameter $\unicode[STIX]{x1D6FD}_{K}$ calculated using the incompressible form of the boundary-layer displacement thickness as length scale is the appropriate similarity parameter to compare both sub- and supersonic cases. Whereas the subsonic APG cases show trends known from incompressible flow, the interpretation of the supersonic PG cases is intricate. Both sub- and supersonic regions exist in the boundary layer, which counteract in their spatial evolution. The boundary-layer thickness $\unicode[STIX]{x1D6FF}_{99}$ and the skin-friction coefficient $c_{f}$, for instance, are therefore in a comparable range for all compressible APG cases. The evaluation of local non-dimensionalized total and turbulent shear stresses shows an almost identical behaviour for both sub- and supersonic cases characterized by similar $\unicode[STIX]{x1D6FD}_{K}$, which indicates the (approximate) validity of Morkovin’s scaling/hypothesis also for compressible PG TBLs. Likewise, the local non-dimensionalized distributions of the mean-flow pressure and the pressure fluctuations are virtually invariant to the local Mach number for same $\unicode[STIX]{x1D6FD}_{K}$-cases. In the inner layer, the van Driest transformation collapses compressible mean-flow data of the streamwise velocity component well into their nearly incompressible counterparts with the same $\unicode[STIX]{x1D6FD}_{K}$. However, noticeable differences can be observed in the wake region of the velocity profiles, depending on the strength of the PG. For both sub- and supersonic cases the recovery factor was found to be significantly decreased by APGs and increased by FPGs, but also to remain virtually constant in regions of approximated equilibrium.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


Sign in / Sign up

Export Citation Format

Share Document