Plasma Actuators for Active Flow Control on Wind Turbine Blades

Author(s):  
Harry Hoeijmakers ◽  
Justin Meijerink
Wind Energy ◽  
2014 ◽  
Vol 18 (5) ◽  
pp. 909-923 ◽  
Author(s):  
Alexander Wolf ◽  
Thorsten Lutz ◽  
Werner Würz ◽  
Ewald Krämer ◽  
Oksana Stalnov ◽  
...  

Author(s):  
Andreas Gross ◽  
Hermann F. Fasel

The flow over a NREL S822 wind turbine airfoil was simulated for a chord Reynolds number of 100,000 and an angle of attack of 5deg. These conditions approximately match the blade element conditions at 80% radius of a 2m diameter turbine operating at 300rpm. A simulation of the uncontrolled flow with steady approach flow conditions shows boundary layer separation on the suction side which is consistent with University of Illinois at Urbana-Champaign experimental data. Active flow control has the potential to locally (and on demand) reduce the unsteady loads on individual turbine blades during non-nominal operation, thereby increasing turbine life. In addition, flow control may help lower the cut-in wind speed. Unsteady flow control for reducing the suction side separation using pulsed vortex generator jets, flip-flop jets, and plasma actuators were evaluated. It was found that very low actuation amplitudes were already sufficient for eliminating the suction side separation. The high effectiveness and efficiency is traced back to hydrodynamic instabilities that lead to a downstream growth of the forced disturbances. Too high actuator amplitudes resulted in early disturbance saturation which made the control inefficient.


Author(s):  
G. Weinzierl ◽  
G. Pechlivanoglou ◽  
C. N. Nayeri ◽  
C. O. Paschereit

This paper presents the continuation of the research efforts of the authors in the direction of the development of “smart blades” for the wind turbines of the future. Results from previous research work is further in combination with a newly developed simulation code in order to assess the performance of Active Flow Control (AFC) elements implemented on modern wind turbine blade structures. Parametric investigations have been conducted in order to identify the optimal configuration of various AFC elements. These are tested under identical boundary conditions to define an overall optimal solution. The results of the research project show that the Active Gurney Flap is the element with a highest probability for the fastest implementation on wind turbine blades for load alleviation purposes. The most promising however overall solution is the Flexible Trailing Edge Flap. With its high control authority and relatively high regulation speed is able to significantly vary the aerodynamic performance of wind turbines.


Author(s):  
D. T. Yen Nakafuji ◽  
C. P. van Dam ◽  
J. Michel ◽  
P. Morrison

Active flow control and load mitigation concepts developed for traditional aeronautical applications have potential to decrease torque, bending and fatigue loads on wind turbine blades and to help increase turbine life. Much of the early work in flow control focused on steady aerodynamic benefits. More recent technologies have focused on unsteady flow control techniques which require a deeper understanding of the underlying flow physics as well as sensors to record the various time-dependent aerodynamic phenomena and fast actuators for control. This paper identifies some developmental control concepts for load mitigation along with a new translational microfabricated tab concept available for active flow and load control on lifting surfaces and explores their applicability for wind turbine rotor blades. Specifically, this paper focuses on experimental results based on an innovative microtab approach for unsteady, active load control. Previous papers on this effort by Yen et al. focused on the multi-disciplinary design methodology and the significant lift enhancement achieved using these micro-scale devices. The current research extends the effort to include dynamic results with discontinuous tab effects, effects on drag, and lower (pressure side) and upper surface (suction side) tab deployment effects for the prototype airfoil as well as for the S809, a representative wind turbine airfoil. Results show that the microtab concept can provide macro-scale load changes and is capable of offering active control of lift and drag forces for load alleviation.


2021 ◽  
Author(s):  
F. F. Rodrigues ◽  
J. Nunes-Pereira ◽  
M. Abdollahzadeh ◽  
J. Pascoa ◽  
S. Lanceros-Mendez

Abstract Dielectric Barrier Discharge (DBD) plasma actuators are simple devices with great potential for active flow control applications. Further, it has been recently proven their ability for applications in the area of heat transfer, such as film cooling of turbine blades or ice removal. The dielectric material used in the fabrication of these devices is essential in determining the device performance. However, the variety of dielectric materials studied in the literature is very limited and the majority of the authors only use Kapton, Teflon, Macor ceramic or poly(methyl methacrylate) (PMMA). Furthermore, several authors reported difficulties in the durability of the dielectric layer when the actuators operate at high voltage and frequency. Also, it has been reported that, after long operation time, the dielectric layer suffers degradation due to its exposure to plasma discharge, degradation that may lead to the failure of the device. Considering the need of durable and robust actuators, as well as the need of higher flow control efficiencies, it is highly important to develop new dielectric materials which may be used for plasma actuator fabrication. In this context, the present study reports on the experimental testing of dielectric materials which can be used for DBD plasma actuators fabrication. Plasma actuators fabricated of poly(vinylidene fluoride) (PVDF) and polystyrene (PS) have been fabricated and evaluated. Although these dielectric materials are not commonly used as dielectric layer of plasma actuators, their interesting electrical and dielectric properties and the possibility of being used as sensors, indicate their suitability as potential alternatives to the standard used materials. The plasma actuators produced with these nonstandard dielectric materials were analyzed in terms of electrical characteristics, generated flow velocity and mechanical efficiency, and the obtained results were compared with a standard actuator made of Kapton. An innovative calorimetric method was implemented in order to estimate the thermal power transferred by these devices to an adjacent flow. These results allowed to discuss the ability of these new dielectric materials not only for flow control applications but also for heat transfer applications.


2021 ◽  
Author(s):  
Kewei Xu ◽  
Gecheng Zha

Abstract This paper applies Co-flow Jet (CFJ) active flow control airfoil to a NREL horizontal axis wind turbine for power output improvement. CFJ is a zero-net-mass-flux active flow control method that dramatically increases airfoil lift coefficient and suppresses flow separation at a low energy expenditure. The 3D Reynolds Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras (SA) turbulence model are solved to simulate the 3D flows of the wind turbines. The baseline wind turbine is the NREL 10.06m diameter phase VI wind turbine and is modified to a CFJ blade by implementing CFJ along the span. The baseline wind turbine performance is validated with the experiment at three wind speeds, 7m/s, 15m/s, and 25m/s. The predicted blade surface pressure distributions and power output agree well with the experimental measurements. The study indicates that the CFJ can enhance the power output at the condition where angle of attack is increased to the level that conventional wind turbine is stalled. At the speed of 7m/s that the NREL turbine is designed to achieve the optimum efficiency at the pitch angle of 3°, the CFJ turbine does not increase the power output. When the pitch angle is reduced by 13° to −10°, the baseline wind turbine is stalled and generates negative power output at 7m/s. But the CFJ wind turbine increases the power output by 12.3% assuming CFJ fan efficiency of 80% at the same wind speed. This is an effective method to extract more power from the wind at all speeds. It is particularly useful at low speeds to decrease cut-in speed and increase power output without exceeding the structure limit. At the freestream velocity of 15m/s and the CFJ momentum coefficient Cμ of 0.23, the net power output is increased by 207.7% assuming the CFJ fan efficiency of 80%, compared to the baseline wind turbine due to the removal of flow separation. The CFJ wind turbine appears to open a door to a new area of wind turbine efficiency improvement and adaptive control for optimal loading.


Sign in / Sign up

Export Citation Format

Share Document