A Computational Tool For Unsteady Aerodynamic Flow Simulations Coupled With Rigid Body Dynamics And Control

Author(s):  
Jonathan Camargo ◽  
Omar Lopez ◽  
Nicolas Ochoa-Lleras
Author(s):  
Martin Hosek

Abstract A control system for a three-link direct-drive robotic manipulator with inherent structural flexibilities is presented. The structural flexibilities introduce undesirable vibration modes which may affect operation of the robot motion controller, resulting in destabilization of the closed-loop system. This represents a major limiting factor for implementation of a conventional controller designed solely for the rigid body dynamics of the robotic manipulator. The fundamental idea in the presented approach is to use a composite controller which consists of a trajectory-tracking section designed for the rigid-body dynamics and a vibration-damping compensator added for attenuation of the dominant flexible dynamics. The vibration damping compensator operates on estimated states of the dominant flexible dynamics obtained from a reduced-order state observer. A mechanism is implemented which allows the robotic manipulator to move through or hold in positions where the dominant flexible dynamics is unobservable and uncontrollable. Results of laboratory tests document that the presented approach leads to improved stability and control performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Jie Li ◽  
Honglei An ◽  
Huayong Zhu ◽  
Lincheng Shen ◽  
Bin Fang

General pseudospectral method is extended to the special Euclidean group SE(3) by virtue of equivariant map for rigid-body dynamics of the aircraft. On SE(3), a complete left invariant rigid-body dynamics model of the aircraft in body-fixed frame is established, including configuration model and velocity model. For the left invariance of the configuration model, equivalent Lie algebra equation corresponding to the configuration equation is derived based on the left-trivialized tangent of local coordinate map, and the top eight orders truncated Magnus series expansion with its coefficients of the solution of the equivalent Lie algebra equation are given. A numerical method called geometric pseudospectral method is developed, which, respectively, computes configurations and velocities at the collocation points and the endpoint based on two different collocation strategies. Through numerical tests on a free-floating rigid-body dynamics compared with several same order classical methods in Euclidean space and Lie group, it is found that the proposed method has higher accuracy, satisfying computational efficiency, stable Lie group structural conservativeness. Finally, how to apply the previous discretization scheme to rigid-body dynamics simulation and control of the aircraft is illustrated.


Author(s):  
Mate Antali ◽  
Gabor Stepan

AbstractIn this paper, the general kinematics and dynamics of a rigid body is analysed, which is in contact with two rigid surfaces in the presence of dry friction. Due to the rolling or slipping state at each contact point, four kinematic scenarios occur. In the two-point rolling case, the contact forces are undetermined; consequently, the condition of the static friction forces cannot be checked from the Coulomb model to decide whether two-point rolling is possible. However, this issue can be resolved within the scope of rigid body dynamics by analysing the nonsmooth vector field of the system at the possible transitions between slipping and rolling. Based on the concept of limit directions of codimension-2 discontinuities, a method is presented to determine the conditions when the two-point rolling is realizable without slipping.


2015 ◽  
Vol 69 ◽  
pp. 40-44
Author(s):  
H.M. Yehia ◽  
E. Saleh ◽  
S.F. Megahid

2014 ◽  
Vol 10 (2) ◽  
pp. e1003456 ◽  
Author(s):  
Pascal Carrivain ◽  
Maria Barbi ◽  
Jean-Marc Victor

Sign in / Sign up

Export Citation Format

Share Document