In-Cylinder Combustion and Output Performance and Emissions Influenced by Split Fuel Injection Input Parameters of Compression-Ignition Engines

Author(s):  
Gong Chen
2006 ◽  
Vol 128 (2) ◽  
pp. 377-387 ◽  
Author(s):  
Koudai Yoshizawa ◽  
Atsushi Teraji ◽  
Hiroshi Miyakubo ◽  
Koichi Yamaguchi ◽  
Tomonori Urushihara

In this research, combustion characteristics of gasoline compression ignition engines have been analyzed numerically and experimentally with the aim of expanding the high load operation limit. The mechanism limiting high load operation under homogeneous charge compression ignition (HCCI) combustion was clarified. It was confirmed that retarding the combustion timing from top dead center (TDC) is an effective way to prevent knocking. However, with retarded combustion, combustion timing is substantially influenced by cycle-to-cycle variation of in-cylinder conditions. Therefore, an ignition timing control method is required to achieve stable retarded combustion. Using numerical analysis, it was found that ignition timing control could be achieved by creating a fuel-rich zone at the center of the cylinder. The fuel-rich zone works as an ignition source to ignite the surrounding fuel-lean zone. In this way, combustion consists of two separate auto-ignitions and is thus called two-step combustion. In the simulation, the high load operation limit was expanded using two-step combustion. An engine system identical to a direct-injection gasoline (DIG) engine was then used to validate two-step combustion experimentally. An air-fuel distribution was created by splitting fuel injection into first and second injections. The spark plug was used to ignite the first combustion. This combustion process might better be called spark-ignited compression ignition combustion (SI-CI combustion). Using the spark plug, stable two-step combustion was achieved, thereby validating a means of expanding the operation limit of gasoline compression ignition engines toward a higher load range.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


Sign in / Sign up

Export Citation Format

Share Document