Study of a Swept Wing with Leading-Edge Ice Using a Wake Survey Technique

Author(s):  
Jeffrey Diebold ◽  
Michael Bragg
AIAA Journal ◽  
2015 ◽  
Vol 53 (6) ◽  
pp. 1712-1715 ◽  
Author(s):  
Jeff M. Diebold ◽  
Michael B. Bragg

Author(s):  
Christopher W. Lum ◽  
Navdeep Sandhu ◽  
Jeffrey M. Diebold ◽  
Brian Woodard ◽  
Michael B. Bragg

2012 ◽  
Vol 711 ◽  
pp. 516-544 ◽  
Author(s):  
David Tempelmann ◽  
Lars-Uve Schrader ◽  
Ardeshir Hanifi ◽  
Luca Brandt ◽  
Dan S. Henningson

AbstractThe receptivity to localized surface roughness of a swept-wing boundary layer is studied by direct numerical simulation (DNS) and computations using the parabolized stability equations (PSEs). The DNS is laid out to reproduce wind tunnel experiments performed by Saric and coworkers, where micron-sized cylinders were used to trigger steady crossflow modes. The amplitudes of the roughness-induced fundamental crossflow wave and its superharmonics obtained from nonlinear PSE solutions agree excellently with the DNS results. A receptivity model using the direct and adjoint PSEs is shown to provide reliable predictions of the receptivity to roughness cylinders of different heights and chordwise locations. Being robust and computationally efficient, the model is well suited as a predictive tool of receptivity in flows of practical interest. The crossflow mode amplitudes obtained based on both DNS and PSE methods are 40 % of those measured in the experiments. Additional comparisons between experimental and PSE data for various disturbance wavelengths reveal that the measured disturbance amplitudes are consistently larger than those predicted by the PSE-based receptivity model by a nearly constant factor. Supplementary DNS and PSE computations suggest that possible natural leading-edge roughness and free-stream turbulence in the experiments are unlikely to account for this discrepancy. It is more likely that experimental uncertainties in the streamwise location of the roughness array and cylinder height are responsible for the additional receptivity observed in the experiments.


2008 ◽  
Vol 3 (3) ◽  
pp. 34-38
Author(s):  
Sergey A. Gaponov ◽  
Yuri G. Yermolaev ◽  
Aleksandr D. Kosinov ◽  
Nikolay V. Semionov ◽  
Boris V. Smorodsky

Theoretical and an experimental research results of the disturbances development in a swept wing boundary layer are presented at Mach number М = 2. In experiments development of natural and small amplitude controllable disturbances downstream was studied. Experiments were carried out on a swept wing model with a lenticular profile at a zero attack angle. The swept angle of a leading edge was 40°. Wave parameters of moving disturbances were determined. In frames of the linear theory and an approach of the local self-similar mean flow the stability of a compressible three-dimensional boundary layer is studied. Good agreement of the theory with experimental results for transversal scales of unstable vertices of the secondary flow was obtained. However the calculated amplification rates differ from measured values considerably. This disagreement is explained by the nonlinear processes observed in experiment


2017 ◽  
Vol 12 (1) ◽  
pp. 57-65
Author(s):  
Alex Yatskih ◽  
Marina Rumenskikh ◽  
Yuri Yermolaev ◽  
Aleksandr Kosinov ◽  
Nikolay Semionov ◽  
...  

The results of experimental study of excitation of localized in time and space controlled disturbances (wave packets) in a supersonic swept-wing boundary layer are presented. The experiments were performed at Mach number M = 2 on the model of wing with a lenticular profile and a 40 degrees sweep angle of the leading edge at zero angle of attack. Wave packets were generated by a pulse electric discharge on the surface of the model. A structure of controlled wave packet was studied. It was found that the wave packet has an asymmetric shape. Comparison with the case of twodimensional boundary layer was done.


AIAA Journal ◽  
2010 ◽  
Vol 48 (11) ◽  
pp. 2660-2673 ◽  
Author(s):  
Donald P. Rizzetta ◽  
Miguel R. Visbal ◽  
Helen L. Reed ◽  
William S. Saric

2015 ◽  
Vol 775 ◽  
Author(s):  
Gianluca Meneghello ◽  
Peter J. Schmid ◽  
Patrick Huerre

A global stability analysis of the boundary layer in the leading edge of a swept wing is performed in the incompressible flow regime. It is demonstrated that the global eigenfunctions display the features characterizing the local instability of the attachment line, as in swept Hiemenz flow, and those of local cross-flow instabilities further downstream along the wing. A continuous connection along the chordwise direction is established between the two local eigenfunctions. An adjoint-based receptivity analysis reveals that the global eigenfunction is most responsive to forcing applied in the immediate vicinity of the attachment line. Furthermore, a sensitivity analysis identifies the wavemaker at a location that is also very close to the attachment line where the corresponding local instability analysis holds: the local cross-flow instability further along the wing is merely fed by its attachment-line counterpart. As a consequence, global mode calculations for the entire leading-edge region only need to include attachment-line structures. The result additionally implies that effective open-loop control strategies should focus on base-flow modifications in the region where the local attachment-line instability prevails.


Sign in / Sign up

Export Citation Format

Share Document