Wind Turbine Blades as a Strain Energy Source for Energy Harvesting

Author(s):  
Dongwon Lim ◽  
Susan Mantell ◽  
Peter Seiler ◽  
Rusen Yang
Author(s):  
Sarim N. Al-Zubaidy ◽  
Jacqueline Bridge ◽  
Alwyn Johnson

Abstract In the past ten to fifteen years wind energy remerged on the world scene with a very healthy growth rate, it has outstripped photovoltaics (solar cells) as the world’s fastest growing energy source, with a growth rate in excess of 30 percent per annum. No longer just a “nice idea for the future” Wind energy is becoming a mainstream energy source for many countries. The proposed paper will present a procedure (using numerical methods) for the design and analysis of Horizontal Axis Wind Turbine (HAWT) rotors. To ascertain the accuracy and to determine where further improvements could be initiated; numerical findings were then compared with published experimental test data and the compression showed an average deviation of less than 3% and therefore the simplifying assumptions made for the prediction of fluid behavior over an airfoil section was justified. Once the approach was validated and standardised a comprehensive airfoil design was produced. A computational fluid dynamic code coupled with a simple numerical algorithm aided the inverse design procedure. The final design was well proportioned and was theoretically able to meet the stated objective function and satisfied all the imposed constraints (manufacturing and geometrical). The geometrical data was then generated in a form suitable for manufacture using manually and numerically controlled machines.


Author(s):  
Lucas I. Lago ◽  
Fernando L. Ponta ◽  
Alejandro D. Otero

Reducing the uncertainties related to blade dynamics by the improvement of the quality of numerical simulations of the fluid structure interaction process is a key for a breakthrough in windturbine technology. A fundamental step in that direction is the implementation of aeroelastic models capable of capturing the complex features of innovative prototype blades, so they can be tested at realistic full-scale conditions with a reasonable computational cost. We make use of a code based on a combination of two advanced numerical models implemented in a parallel HPC supercomputer platform: First, a model of the structural response of heterogeneous composite blades, based on a variation of the dimensional reduction technique proposed by Hodges and Yu. This technique has the capacity of reducing the geometrical complexity of the blade section into a stiffness matrix for an equivalent beam. The reduced 1-D strain energy is equivalent to the actual 3-D strain energy in an asymptotic sense, allowing accurate modeling of the blade structure as a1-D finite-element problem. This substantially reduces the computational effort required to model the structural dynamics at each time step. Second, a novel aerodynamic model based on an advanced implementation of the BEM (Blade Element Momentum) Theory; where all velocities and forces are re-projected through orthogonal matrices into the instantaneous deformed configuration to fully include the effects of large displacements and rotation of the airfoil sections into the computation of aerodynamic forces. This allows the aerodynamic model to take into account the effects of the complex flexo-torsional deformation that can be captured by the more sophisticated structural model mentioned above. In this presentation, we report some recent results we have obtained applying our code to full-scale composite laminate wind-turbine blades, analyzing the fundamental vibrational modes and the stress load in normal operational conditions.


2009 ◽  
Vol 129 (5) ◽  
pp. 689-695
Author(s):  
Masayuki Minowa ◽  
Shinichi Sumi ◽  
Masayasu Minami ◽  
Kenji Horii

2021 ◽  
Author(s):  
Aileen G. Bowen Perez ◽  
Giovanni Zucco ◽  
Paul Weaver

Author(s):  
Salete Alves ◽  
Luiz Guilherme Vieira Meira de Souza ◽  
Edália Azevedo de Faria ◽  
Maria Thereza dos Santos Silva ◽  
Ranaildo Silva

Sign in / Sign up

Export Citation Format

Share Document