Real-Time Optimal Gain Scheduling for Nonlinear Dynamic Inversion

Author(s):  
Leif Walter ◽  
Gunther Schlöffel ◽  
Sebastian Fleischmann ◽  
Florian Holzapfel ◽  
Florian Peter
Author(s):  
Mohammed Alabsi ◽  
Travis Fields

Aircraft prototyping and modeling is usually associated with resource expensive techniques and significant post-flight analysis. The NASA Learn-To-Fly concept targets the replacement of the conventional ground-based aircraft development and prototyping approaches with an efficient real-time paradigm. The work presented herein describes a learning paradigm of a quadcopter unmanned aircraft that utilizes real-time flight data. Closed-loop parameter estimation of a highly collinear model terms such as those found on a quadrotor is challenging. Using phase optimized orthogonal multisine input maneuvers, collinearity of flight data decreases leading to fast and accurate convergence of the Fourier transform regression estimator. The generated models are utilized to reconfigure a nonlinear dynamic inversion controller in normal, failure, and learning testing conditions. Results show highly accurate model estimation in different testing scenarios. Additionally, the nonlinear dynamic inversion controller easily integrates the identified model parameters without any need for gain scheduling or computationally expensive methods. Overall, the proposed technique introduces an efficient integration between real-time modeling and control adaptation utilizing the limited computational power of the quadcopter’s microcomputer.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Eunro Kim ◽  
Inseok Yang ◽  
Dongik Lee

The time-delay robust nonlinear dynamic inversion (TDRNDI) control technique is proposed to synchronize time-delay Chen systems. The time-delay Chen circuit is simple but exhibits complex irregular (chaotic) behavior. For this reason, this circuit can be efficiently used to encrypt messages for secure communication. In this paper, the nonlinear control-based chaos synchronization problem is considered. The proposed TDRNDI controller is a modified version of a robust nonlinear dynamic inversion (RNDI) applicable to chaotic systems, including time-delay systems. The performance and feasibility of the proposed TDRNDI controller are demonstrated by conducting numerical simulations with application to a secure communication network.


2003 ◽  
Vol 40 (1) ◽  
pp. 64-71 ◽  
Author(s):  
R. R. da Costa ◽  
Q. P. Chu ◽  
J. A. Mulder

Sign in / Sign up

Export Citation Format

Share Document