On The Mathematical Modeling Of Flow Regimes And Thermal Characteristics Of Turbulent Flames In Industrial Furnaces

Author(s):  
Essam E. Khalil ◽  
Esmail M. Bialy ◽  
Mohamed M. Hassan ◽  
Akram Ibrahim
2011 ◽  
Vol 8 (1) ◽  
pp. 143-152
Author(s):  
S.F. Khizbullina

The steady flow of anomalous thermoviscous liquid between the coaxial cylinders is considered. The inner cylinder rotates at a constant angular velocity while the outer cylinder is at rest. On the basis of numerical experiment various flow regimes depending on the parameter of viscosity temperature dependence are found.


2002 ◽  
Author(s):  
Essam E. Khalil

The recent advances in numerical methods and the vast development of computers had directed the designers to better development and modifications to air flow pattern and heat transfer in combustion chambers. Extensive efforts are exerted to adequately predict the air velocity and turbulence intensity distributions in the combustor zones and to reduce the emitted pollution and noise abatement to ultimately produce quite and energy efficient combustor systems. The present work fosters mathematical modeling techniques to primarily predict what happens in three-dimensional combustion chambers simulating boiler furnaces, areo engines in terms of flow regimes and interactions. The present work also demonstrates the effect of chamber design and operational parameters on performance, wall heat transfer under various operating parameters. The governing equations of mass, momentum and energy are commonly expressed in a preset form with source terms to represent pressure gradients, turbulence and viscous action. The physical and chemical characteristics of the air and fuel are obtained from tabulated data in the literature. The flow regimes and heat transfer play an important role in the efficiency and utilization of energy. The results are obtained in this work with the aid of the three-dimensional program 3DCOMB; applied to axisymmetrical and three-dimensional complex geometry with and without swirl with liquid or gaseous fuels. The present numerical grid arrangements cover the combustion chamber in the X, R or Y and Z coordinates directions. The numerical residual in the governing equations is typically less than 0.001%. The obtained results include velocity vectors, turbulence intensities and wall heat transfer distributions in combusors. Examples of large industrial furnaces are shown and are in good agreement with available measurements in the open literature. One may conclude that flow patterns, turbulence and heat transfer in combustors are strongly affected by the inlet swirl, inlet momentum ratios, combustor geometry. Both micro and macro mixing levels are influential. The present modeling capabilities can adequately predict the local flow pattern and heat transfer characteristics in Complex combustors. Proper representation of the heat transfer and radiation flux is important in adequate predictions of large furnace performance.


Author(s):  
Marc Mac Giolla Eain ◽  
Vanessa Egan ◽  
Jeff Punch

Two-phase flow regimes offer numerous advantages over traditional single phase flows, resulting in a wide variety of uses in diverse applications such as electronics cooling, heat exchange systems, pharmacology and biological micro-fluidics. This paper experimentally investigates the enhanced heat transfer rates attainable with two-phase liquid-liquid non-boiling droplet flow. A custom experimental facility was constructed, allowing the flow to be analysed in a minichannel geometry subjected to a constant heat flux boundary condition. Parameters of Reynolds number, Capillary number, droplet length and droplet spacing were varied during the course of the experimentation. The experiments were conducted over the Reynolds number range of 46 ≤ Re ≤ 71.8 and a Capillary number range of 0.00849 ≤ Ca ≤ 0.0102. The flow passed through a capillary of 1.5mm internal diameter and 0.25mm wall thickness. Local Nusselt numbers were obtained at the entrance region through the use of infrared thermography. Enhancements of 144% over fully developed Poiseuille flow were encountered. The findings of this paper highlight the thermal characteristics of two-phase liquid-liquid flow regimes and are of practical relevance to applications in both the thermal management and biological micro-fluidics industries.


Author(s):  
Essam E. Khalil

The recent advances in numerical methods and the vast development of computers have directed the designers to better development and modifications to air-flow pattern and heat transfer in combustion chambers. Extensive efforts are exerted to adequately predict the air velocity and turbulence intensity distributions in the combustor zones, and to reduce the air pollution and noise abatement to ultimately produce quite and energy efficient combustor systems. The present work utilizes mathematical modeling techniques to primarily predict what happens in three-dimensional combustion chambers simulating boiler furnaces, and areo engines in terms of flow regimes and interactions. The present work also demonstrates the effect of chamber design and operational parameters on performance, wall shear stresses, and vorticity under various operating parameters. The governing equations of mass, momentum and energy are commonly expressed in a preset form with source terms to represent pressure radients, turbulence and viscous action. The physical and chemical characteristics of the air and fuel are obtained from tabulated data in the literature. The flow regimes and heat transfer plays an important role in the efficiency and utilization of energy. The behavior was found to be strongly dependent on turbulent shear, mixing, blockage, wall conditions and location of fuel and air inlets. Eddies can be strong enough to have higher velocities typically near reactants supply openings. Excessive transverse flow velocities cause extra macromixing; the air flow regimes are complex and of three-dimensional nature; with the advance of computational techniques it is possible to accurately simulate three-dimensional flows. The results reported in this work were obtained with the aid of the three-dimensional program 3DCOMB; applied to axisymmetrical and three-dimensional complex geometry with and without swirl. The present numerical grid comprises, typically, 144000-grid node covering the combustion chamber volume in the X, R or Y and Z coordinates directions. The numerical residual in the governing equations typically less than 0.001%. A modified grid generation formula was proposed and incorporated in the present work. Examples of large industrial furnaces are shown and were in good agreement with available measurements in the open literature. One may conclude that flow patterns, turbulence and heat transfer in combustors are strongly affected by the inlet swirl, inlet momentum ratios, combustor geometry; both micro and macro mixing levels are influential. Greater tangential velocities and turbulence characteristics are demonstrated in situations with higher swirl intensities. The present modeling capabilities can adequately predict the local flow pattern and turbulence kinetic energy levels in complex combustors.


Sign in / Sign up

Export Citation Format

Share Document