Thermite Reactions in the Mixtures of Magnesium with Lunar and Martian Regolith Simulants

Author(s):  
Armando Delgado ◽  
Evgeny Shafirovich
Keyword(s):  
Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Christopher Oze ◽  
Joshua Beisel ◽  
Edward Dabsys ◽  
Jacqueline Dall ◽  
Gretchen North ◽  
...  

Perchlorate (ClO4−) is globally enriched in Martian regolith at levels commonly toxic to plants. Consequently, perchlorate in Martian regolith presents an obstacle to developing agriculture on Mars. Here, we assess the effect of perchlorate at different concentrations on plant growth and germination, as well as metal release in a simulated Gusev Crater regolith and generic potting soil. The presence of perchlorate was uniformly detrimental to plant growth regardless of growing medium. Plants in potting soil were able to germinate in 1 wt.% perchlorate; however, these plants showed restricted growth and decreased leaf area and biomass. Some plants were able to germinate in regolith simulant without perchlorate; however, they showed reduced growth. In Martian regolith simulant, the presence of perchlorate prevented germination across all plant treatments. Soil column flow-through experiments of perchlorate-containing Martian regolith simulant and potting soil were unable to completely remove perchlorate despite its high solubility. Additionally, perchlorate present in the simulant increased metal/phosphorous release, which may also affect plant growth and biochemistry. Our results support that perchlorate may modify metal availability to such an extent that, even with the successful removal of perchlorate, Martian regolith may continue to be toxic to plant life. Overall, our study demonstrates that the presence of perchlorate in Martian regolith provides a significant challenge in its use as an agricultural substrate and that further steps, such as restricted metal availability and nutrient enrichment, are necessary to make it a viable growing substrate.


Icarus ◽  
2019 ◽  
Vol 329 ◽  
pp. 79-87 ◽  
Author(s):  
Szilárd Gyalay ◽  
Eldar Z. Noe Dobrea ◽  
Kathryn Chu ◽  
Karly M. Pitman

2001 ◽  
Vol 53 (4) ◽  
pp. 257-266 ◽  
Author(s):  
Frank B. Gross ◽  
Sasha B. Grek ◽  
Carlos I. Calle ◽  
Rupert U. Lee

Icarus ◽  
2003 ◽  
Vol 166 (1) ◽  
pp. 1-20 ◽  
Author(s):  
E.Z Noe Dobrea ◽  
J.F Bell ◽  
M.J Wolff ◽  
K.D Gordon
Keyword(s):  

Icarus ◽  
1978 ◽  
Vol 34 (3) ◽  
pp. 645-665 ◽  
Author(s):  
Benton C. Clark
Keyword(s):  

2017 ◽  
Vol 211 (1-4) ◽  
pp. 239-258 ◽  
Author(s):  
Jason P. Marshall ◽  
Troy L. Hudson ◽  
José E. Andrade

Icarus ◽  
2005 ◽  
Vol 177 (1) ◽  
pp. 174-189 ◽  
Author(s):  
H.M. Böttger ◽  
S.R. Lewis ◽  
P.L. Read ◽  
F. Forget
Keyword(s):  

2020 ◽  
Author(s):  
Cedric Schmelzbach ◽  
Nienke Brinkman ◽  
David Sollberger ◽  
Sharon Kedar ◽  
Matthias Grott ◽  
...  

<p>The InSight ultra-sensitive broadband seismometer package (SEIS) was installed on the Martian surface with the goal to study the seismicity on Mars and the deep interior of the Planet. A second surface-based instrument, the heat flow and physical properties package HP<sup>3</sup>, was placed on the Martian ground about 1.1 m away from SEIS. HP<sup>3</sup> includes a self-hammering probe called the ‘mole’ to measure the heat coming from Mars' interior at shallow depth to reveal the planet's thermal history. While SEIS was designed to study the deep structure of Mars, seismic signals such as the hammering ‘noise’ as well as ambient and other instrument-generated vibrations allow us to investigate the shallow subsurface. The resultant near-surface elastic property models provide additional information to interpret the SEIS data and allow extracting unique geotechnical information on the Martian regolith.</p><p>The seismic signals recorded during HP<sup>3</sup> mole operations provide information about the mole attitude and health as well as shed light on the near-surface, despite the fact that the HP<sup>3 </sup>mole continues to have difficulty penetrating below 40 cm (one mole length). The seismic investigation of the HP<sup>3</sup> hammering signals, however, was not originally planned during mission design and hence faced several technical challenges. For example, the anti-aliasing filters of the seismic-data acquisition chain were adapted when recording the mole hammering to allow recovering information above the nominal Nyquist frequency. In addition, the independently operating SEIS, HP<sup>3</sup> and lander clocks had to be correlated more frequently than in normal operation to enable high-precision timing.</p><p>To date, the analysis of the hammering signals allowed us to constrain the bulk P-wave velocity of the volume between the mole tip and SEIS (top 30 cm) to around 120 m/s. This low velocity value is compatible with laboratory tests performed on Martian regolith analogs with a density of around 1500 kg/m<sup>3</sup>. Furthermore, the SEIS leveling system resonances, seismic recordings of atmospheric pressure signals, HP<sup>3</sup> housekeeping data, and imagery provide additional constraints to establish a first seismic model of the shallow (topmost meters) subsurface at the landing site.</p>


Author(s):  
Tereza Varnali ◽  
Howell G. M. Edwards

The recognition that scytonemin, the radiation protectant pigment produced by extremophilic cyanobacterial colonies in stressed terrestrial environments, is a key biomarker for extinct or extant life preserved in geological scenarios is critically important for the detection of life signatures by remote analytical instrumentation on planetary surfaces and subsurfaces. The ExoMars mission to seek life signatures on Mars is just one experiment that will rely upon the detection of molecules such as scytonemin in the Martian regolith. Following a detailed structural analysis of the parent scytonemin, we report here for the first time a similar analysis of several of its methoxy derivatives that have recently been extracted from stressed cyanobacteria. Ab initio calculations have been carried out to determine the most stable molecular configurations, and the implications of the structural changes imposed by the methoxy group additions on the spectral characteristics of the parent molecule are discussed. The calculated electronic absorption bands of the derivative molecules reveal that their capability of removing UVA wavelengths is removed while preserving the ability to absorb the shorter wavelength UVB and UVC radiation, in contrast to scytonemin itself. This is indicative of a special role for these molecules in the protective strategy of the cyanobacterial extremophiles.


Sign in / Sign up

Export Citation Format

Share Document