Extension of the Random Particle Mesh method to periodic turbulent flows for fan broadband noise prediction

Author(s):  
Attila M. Wohlbrandt ◽  
Sebastien Guerin ◽  
Roland Ewert
Author(s):  
Ali Kadar ◽  
Sophie Le Bras ◽  
Hadrien Bériot ◽  
Christophe F. Schram ◽  
Vyacheslav Korchagin ◽  
...  

2018 ◽  
pp. 214-223
Author(s):  
AM Faria ◽  
MM Pimenta ◽  
JY Saab Jr. ◽  
S Rodriguez

Wind energy expansion is worldwide followed by various limitations, i.e. land availability, the NIMBY (not in my backyard) attitude, interference on birds migration routes and so on. This undeniable expansion is pushing wind farms near populated areas throughout the years, where noise regulation is more stringent. That demands solutions for the wind turbine (WT) industry, in order to produce quieter WT units. Focusing in the subject of airfoil noise prediction, it can help the assessment and design of quieter wind turbine blades. Considering the airfoil noise as a composition of many sound sources, and in light of the fact that the main noise production mechanisms are the airfoil self-noise and the turbulent inflow (TI) noise, this work is concentrated on the latter. TI noise is classified as an interaction noise, produced by the turbulent inflow, incident on the airfoil leading edge (LE). Theoretical and semi-empirical methods for the TI noise prediction are already available, based on Amiet’s broadband noise theory. Analysis of many TI noise prediction methods is provided by this work in the literature review, as well as the turbulence energy spectrum modeling. This is then followed by comparison of the most reliable TI noise methodologies, qualitatively and quantitatively, with the error estimation, compared to the Ffowcs Williams-Hawkings solution for computational aeroacoustics. Basis for integration of airfoil inflow noise prediction into a wind turbine noise prediction code is the final goal of this work.


2014 ◽  
Vol 118 (1208) ◽  
pp. 1125-1135 ◽  
Author(s):  
M. J. Kingan

Abstract The purpose of this paper is to describe the current status of open rotor noise prediction methods and to highlight future challenges in this area. A number of analytic and numerical methods are described which can be used for predicting ‘isolated’ and ‘installed’ open rotor tonal noise. Broadband noise prediction methods are also described and it is noted that further development and validation of the current models is required. The paper concludes with a discussion of the analytical methods which are used to assess the acoustic data collected during the high-speed wind-tunnel testing of a model scale advanced open rotor rig.


Author(s):  
Felix Grimm ◽  
Roland Ewert ◽  
Jürgen Dierke ◽  
Berthold Noll ◽  
Manfred Aigner

A new highly efficient, hybrid CFD/CAA approach for broadband combustion noise modeling is introduced. The inherent sound source generation mechanism is based on turbulent flow field statistics, which are determined from reacting RANS calculations. The generated sources form the right-hand side of the linearized Euler equations for the calculation of sound fields. The stochastic time-domain source reconstruction algorithm is briefly described with emphasis on two different ways of spatial discretization, RPM (Random Particle Method) and the newly developed FRPM (Fast RPM). The application of mainly the latter technique to combustion noise (CN) prediction and several methodical progressions are presented in the paper. (F)RPM-CN is verified in terms of its ability to accurately reproduce prescribed turbulence-induced one- and two-point statistics for a generic test and the DLR-A jet flame validation case. Former works on RPM-CN have been revised and as a consequence methodical improvements are introduced along with the progression to FRPM-CN: A canonical CAA setup for the applications DLR-A, -B and H3 flame is used. Furthermore, a second order Langevin decorrelation model is introduced for FRPM-CN, to avoid spurious high frequency noise. A new calibration parameter set for reacting jet noise prediction with (F)RPM-CN is proposed. The analysis shows the universality of the data set for 2D jet flame applications and furthermore the method’s accountance for Reynolds scalability. In this context, a Mach number scaling law is used to conserve Strouhal similarity of the jet flame spectra. Finally, the numerical results are compared to suitable similarity spectra.


2011 ◽  
Vol 20 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Takaaki Hase ◽  
Nobuhiko Yamasaki ◽  
Tsutomu Ooishi

Sign in / Sign up

Export Citation Format

Share Document