Investigation of the Effect of Blade Kinematics and Reynolds Number on the Aerodynamic Performance of a Small-Scale Vertical Axis Wind Turbine with Dynamic Blade Pitching

Author(s):  
Andrew Mills ◽  
Moble Benedict ◽  
Inderjit Chopra
Author(s):  
Mosfequr Rahman ◽  
Khandakar N. Morshed ◽  
Ahsan Mian

Considerable improvements in the aerodynamic performance of a vertical axis wind turbine (VAWT) can be achieved by integrating computational fluid dynamics (CFD) simulation and wind tunnel investigation in their design improvement. With the growing demand for energy worldwide, conventional sources are becoming more scarce and expensive. Wind is among the most popular and fastest growing sources of alternative energy in the world. It is an inexhaustible, indigenous resource, pollution-free, and available almost any time of the day, especially in coastal regions. Industry experts predict that, with proper development, wind energy could provide 20% of the nation’s energy needs. Vertical axis wind turbines (VAWTs) may be as efficient and practical as, and simpler, and significantly cheaper to build and maintain than, horizontal axis wind turbines (HAWTs). They have other inherent advantages; for example, they always face the wind. VAWTs include both a drag-type configuration, such as the Savonius rotor, and a lift-type configuration, such as the Darrieus rotor. The Savonius wind turbine is the simplest. Its operation depends on the difference in drag force when the wind strikes either the convex or concave part of its semi-cylindrical blades. It is good at self-starting and works independently of wind direction. However, its efficiency is relatively lower than that of the lift-type VAWTs. Due to its simple design and low construction cost, Savonius rotors are primarily used for water pumping and to generate wind power on a small scale and its large starting torque makes it suitable for starting other types of wind turbines that have inferior starting characteristics. Recently, some generators with high torque at low rotational speed, suitable for small-scale wind turbines, have been developed, suggesting that Savonius rotors may yet be used to generate electric power. The main goal of this research work is to improve the aerodynamic performance of the three bladed vertical axis Savonius wind turbine. Based on this goal, the objective of this project is to study the performance characteristics of the Savonius wind turbine scale models both experimentally and numerically. The turbine scale models will have different designs with different overlap ratios (ratio of gap between two adjacent blades and the rotor diameter) and without overlap within three blades. The experimental measurements and testing will be conducted in front of a low speed subsonic wind tunnel at different Reynolds number and the computational fluid dynamic (CFD) flow simulation around those design models will be performed by commercial CFD software FLUENT and GAMBIT.


Author(s):  
Changping Liang ◽  
Deke Xi ◽  
Sen Zhang ◽  
Baofeng Chen ◽  
Xiangqian Wang ◽  
...  

Optimizing the NACA0015 airfoil which is widely applied in small-scale vertical axis wind turbine to make it has a better aerodynamic performance. In the optimization process, using CST parameterization method to perturb the airfoil geometry, the thickness and camber of the airfoil are selected as the constraint, and the value of the maximum tangential force coefficient is chosen as the objective function, the genetic algorithm based on non-dominated sorting (NSGA-II)is selected as an optimization method, calculates the aerodynamic performance of the airfoil by applying the approach of combining XFOIL program and Viterna-Corrigan post-stall mode ,and establishes the optimizing process by the optimization software modefrontier for NACA0015 airfoil’s muti-point optimization, validate the airfoil’s performance with CFD finally. The result illustrates that, by comparing with the NACA0015 airfoil, the optimized airfoil’s lift to drag ratio is improved over a wide range of attack angles, the stall performance is more gentle. The maximum lift coefficient, the maximum lift-drag ratio and the maximum tangential force coefficient are increased by 7.5%,9 and 8.87%, respectively. The optimized airfoil has a wide variable condition performance, more suitable for the operating conditions of a vertical axis wind turbine. Finally, predict the rotor efficiency with optimized airfoil and NACA0015 airfoil for different tip speed ratios and different solidities with multiple streamtube model, the result shows the rotor with optimized airfoil has a higher efficiency.


2018 ◽  
Vol 53 ◽  
pp. 02004
Author(s):  
Qiuyun Mo ◽  
Jiabei Yin ◽  
Lin Chen ◽  
Weihao Liu ◽  
Li Jiang ◽  
...  

In this paper, a 2D off-grid small compact model of vertical axis wind turbine was established. The sliding grid technology, the RNG turbulence model and the Coupld algorithm was applied to simulate the unsteady value of the model's aerodynamic performance. Through the analysis on the flow field at difference moments, the rules about velocity fields, vortices distributions and the wind turbine's total torque were obtained. The results show that: the speed around wind turbine blades have obvious gradient, and the velocity distribution at different times show large differences in the computional domain. In the rotating domain vorticity is large. With away from the rotation domain, vorticity reduced quickly. In the process of rotating for vertical axis wind turbine, the wind turbine's total torque showed alternating positive and negative changes.


Sign in / Sign up

Export Citation Format

Share Document