Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine

Author(s):  
David Wafula Wekesa ◽  
Cong Wang ◽  
Yingjie Wei ◽  
Weidong Zhu
Author(s):  
N. Cristobal Uzarraga-Rodriguez ◽  
A. Gallegos-Mun˜oz ◽  
J. Manuel Riesco A´vila

A numerical analysis of a rooftop vertical axis wind turbine (VAWT) for applications in urban area is presented. The numerical simulations were developed to study the flow field through the turbine rotor to analyze the aerodynamic performance characteristics of the device. Three different blade numbers of wind turbine are studied, 2, 3 and 4, respectively. Each one of the models was built in a 3D computational model. The effects generated in the performance of turbines by the numbers of blades are considered. A Sliding Mesh Model (SMM) capability was used to present the dimensionless form of coefficient power and coefficient moment of the wind turbine as a function of the wind velocity and the rotor rotational speed. The numerical study was developed in CFD using FLUENT®. The results show the aerodynamic performance for each configuration of wind turbine rotor. In the cases of Rooftop rotor the power coefficient increases as the blade number increases, while in the case of Savonius rotor the power coefficient decrease as the blades number increases.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Amin A. Mohammed ◽  
Ahmet Z. Sahin ◽  
Hassen M. Ouakad

Abstract A double multiple streamtube model coupled with variable pitch methodology is used to analyze the performance characteristics of a small-scale straight-bladed Darrieus type vertical axis wind turbine (SB-VAWT). The numerical study revealed that a fixed pitch of −2.5 deg could greatly enhance the performance of the wind turbine. However, no improvement is observed in the starting torque capacity. Furthermore, the performance of upwind and downwind zones has been investigated, and it is found that the VAWT starting capacity is improved by increasing/decreasing the pitch angle upwind/downwind of the turbine. To optimize the performance, four cases of variable pitch angle schemes of sinusoidal nature were examined. The parameters of the sinusoidal functions were optimized using differential evolution (DE) algorithm with different cost functions. The results showed improvement in the power coefficient, yet with low starting capacity enhancement. Among the objective functions used in DE algorithm, the negative of the average power coefficient is found to lead to the best starting capacity with moderate peak power coefficient.


2016 ◽  
Vol 114 ◽  
pp. 02088 ◽  
Author(s):  
Teresa Parra-Santos ◽  
Armando Gallegos ◽  
Cristóbal N. Uzarraga ◽  
Miguel A. Rodriguez

Author(s):  
Changping Liang ◽  
Deke Xi ◽  
Sen Zhang ◽  
Baofeng Chen ◽  
Xiangqian Wang ◽  
...  

Optimizing the NACA0015 airfoil which is widely applied in small-scale vertical axis wind turbine to make it has a better aerodynamic performance. In the optimization process, using CST parameterization method to perturb the airfoil geometry, the thickness and camber of the airfoil are selected as the constraint, and the value of the maximum tangential force coefficient is chosen as the objective function, the genetic algorithm based on non-dominated sorting (NSGA-II)is selected as an optimization method, calculates the aerodynamic performance of the airfoil by applying the approach of combining XFOIL program and Viterna-Corrigan post-stall mode ,and establishes the optimizing process by the optimization software modefrontier for NACA0015 airfoil’s muti-point optimization, validate the airfoil’s performance with CFD finally. The result illustrates that, by comparing with the NACA0015 airfoil, the optimized airfoil’s lift to drag ratio is improved over a wide range of attack angles, the stall performance is more gentle. The maximum lift coefficient, the maximum lift-drag ratio and the maximum tangential force coefficient are increased by 7.5%,9 and 8.87%, respectively. The optimized airfoil has a wide variable condition performance, more suitable for the operating conditions of a vertical axis wind turbine. Finally, predict the rotor efficiency with optimized airfoil and NACA0015 airfoil for different tip speed ratios and different solidities with multiple streamtube model, the result shows the rotor with optimized airfoil has a higher efficiency.


Sign in / Sign up

Export Citation Format

Share Document