scholarly journals Multifidelity Uncertainty Propagation in Coupled Multidisciplinary Systems

Author(s):  
Anirban Chaudhuri ◽  
Karen E. Willcox
Author(s):  
Seyede Fatemeh Ghoreishi ◽  
Mahdi Imani

Abstract Engineering systems are often composed of many subsystems that interact with each other. These subsystems, referred to as disciplines, contain many types of uncertainty and in many cases are feedback-coupled with each other. In designing these complex systems, one needs to assess the stationary behavior of these systems for the sake of stability and reliability. This requires the system level uncertainty analysis of the multidisciplinary systems, which is often computationally intractable. To overcome this issue, techniques have been developed for capturing the stationary behavior of the coupled multidisciplinary systems through available data of individual disciplines. The accuracy and convergence of the existing techniques depend on a large amount of data from all disciplines, which are not available in many practical problems. Toward this, we have developed an adaptive methodology that adds the minimum possible number of samples from individual disciplines to achieve an accurate and reliable uncertainty propagation in coupled multidisciplinary systems. The proposed method models each discipline function via Gaussian process (GP) regression to derive a closed-form policy. This policy sequentially selects a new sample point that results in the highest uncertainty reduction over the distribution of the coupling design variables. The effectiveness of the proposed method is demonstrated in the uncertainty analysis of an aerostructural system and a coupled numerical example.


AIAA Journal ◽  
2017 ◽  
Vol 55 (11) ◽  
pp. 3940-3950 ◽  
Author(s):  
S. F. Ghoreishi ◽  
D. L. Allaire

AIAA Journal ◽  
2018 ◽  
Vol 56 (1) ◽  
pp. 235-249 ◽  
Author(s):  
Anirban Chaudhuri ◽  
Remi Lam ◽  
Karen Willcox

Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1830
Author(s):  
Gullnaz Shahzadi ◽  
Azzeddine Soulaïmani

Computational modeling plays a significant role in the design of rockfill dams. Various constitutive soil parameters are used to design such models, which often involve high uncertainties due to the complex structure of rockfill dams comprising various zones of different soil parameters. This study performs an uncertainty analysis and a global sensitivity analysis to assess the effect of constitutive soil parameters on the behavior of a rockfill dam. A Finite Element code (Plaxis) is utilized for the structure analysis. A database of the computed displacements at inclinometers installed in the dam is generated and compared to in situ measurements. Surrogate models are significant tools for approximating the relationship between input soil parameters and displacements and thereby reducing the computational costs of parametric studies. Polynomial chaos expansion and deep neural networks are used to build surrogate models to compute the Sobol indices required to identify the impact of soil parameters on dam behavior.


Sign in / Sign up

Export Citation Format

Share Document