Impacts of High-Speed Non-Equilibrium Reacting Flows to Scramjet Inlets

Author(s):  
Pratibha Raghunandan ◽  
Stephen Ruffin
Author(s):  
Alexander M. Molchanov ◽  
Anna A. Arsentyeva

An implicit fully coupled numerical method for modeling of chemically reacting flows is presented. Favre averaged Navier-Stokes equations of multi-component gas mixture with nonequilibrium chemical reactions using Arrhenius chemistry are applied. A special method of splitting convective fluxes is introduced. This method allows for using spatially second-order approximation in the main flow region and of first-order approximation in regions with discontinuities. To consider the effects of high-speed compressibility on turbulence the author suggests a correction for the model, which is linearly dependent on Mach turbulent number. For the validation of the code the described numerical procedures are applied to a series of flow and heat and mass transfer problems. These include supersonic combustion of hydrogen in a vitiated air, chemically reacting flow through fluid rocket nozzle, afterburning of fluid and solid rocket plumes, fluid dynamics and convective heat transfer in convergent-divergent nozzle. Comparison of the simulation with available experimental data showed a good agreement for the above problems.


2011 ◽  
pp. 247-252
Author(s):  
Sinan Eyi ◽  
Alper Ezertas ◽  
Mine Yumusak

1966 ◽  
Vol 26 (4) ◽  
pp. 793-806 ◽  
Author(s):  
George R. Inger

The approach to equilibrium in a non-equilibrium-dissociating boundary-layer flow along a catalytic or non-catalytic surface is treated from the standpoint of a singular perturbation problem, using the method of matched asymptotic expansions. Based on a linearized reaction rate model for a diatomic gas which facilitates closed-form analysis, a uniformly valid solution for the near equilibrium behaviour is obtained as the composite of appropriate outer and inner solutions. It is shown that, under near equilibrium conditions, the primary non-equilibrium effects are buried in a thin sublayer near the body surface that is described by the inner solution. Applications of the theory are made to the calculation of heat transfer and atom concentrations for blunt body stagnation point and high-speed flat-plate flows; the results are in qualitative agreement with the near equilibrium behaviour predicted by numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document