Numerical Simulation of Heat Transfer and Fluid Dynamics in Supersonic Chemically Reacting Flows

Author(s):  
Alexander M. Molchanov ◽  
Anna A. Arsentyeva

An implicit fully coupled numerical method for modeling of chemically reacting flows is presented. Favre averaged Navier-Stokes equations of multi-component gas mixture with nonequilibrium chemical reactions using Arrhenius chemistry are applied. A special method of splitting convective fluxes is introduced. This method allows for using spatially second-order approximation in the main flow region and of first-order approximation in regions with discontinuities. To consider the effects of high-speed compressibility on turbulence the author suggests a correction for the model, which is linearly dependent on Mach turbulent number. For the validation of the code the described numerical procedures are applied to a series of flow and heat and mass transfer problems. These include supersonic combustion of hydrogen in a vitiated air, chemically reacting flow through fluid rocket nozzle, afterburning of fluid and solid rocket plumes, fluid dynamics and convective heat transfer in convergent-divergent nozzle. Comparison of the simulation with available experimental data showed a good agreement for the above problems.

2007 ◽  
Vol 60 (4) ◽  
pp. 139-148 ◽  
Author(s):  
Viacheslav A. Vinogradov ◽  
Yurii M. Shikhman ◽  
Corin Segal

Developing an efficient, supersonic combustion-based, air breathing propulsion cycle operating above Mach 3.5, especially when conventional hydrocarbon fuels are sought and particularly when liquid fuels are preferred to increase density, requires mostly effective mechanisms to improve mixing efficiency. One way to extend the time available for mixing is to inject part of the fuel upstream of the vehicle’s combustion chamber. Injection from the wall remains one of the most challenging problems in supersonic aerodynamics, including the requirement to minimize impulse losses, improve fuel-air mixing, reduce inlet∕combustor interactions, and promote flame stability. This article presents a review of studies involving liquid and, in selected cases, gaseous fuel injected in supersonic inlets or in combustor’s insulators. In all these studies, the fuel was injected from a wall in a wake of thin swept pylons at low dynamic pressure ratios (qjet∕qair=0.6–1.5), including individual pylon∕injector geometries and combinations in the inlet and combustor’s isolator, a variety of injection conditions, different injectants, and evaluated their effects on fuel plume spray, impulse losses, and mixing efficiency. This review article cites 47 references.


10.2514/3.261 ◽  
1991 ◽  
Vol 5 (3) ◽  
pp. 274-283 ◽  
Author(s):  
Philip E. Buelow ◽  
John C. Tannehill ◽  
John O. levalts ◽  
Scott L. Lawrence

Author(s):  
Zezhi Zeng ◽  
Gopinath Warrier ◽  
Y. Sungtaek Ju

Direct-contact heat transfer between a falling liquid film and a gas stream yield high heat transfer rates and as such it is routinely used in several industrial applications. This concept has been incorporated by us into the proposed design of a novel heat exchanger for indirect cooling of steam in power plants. The DILSHE (Direct-contact Liquid-on-String Heat Exchangers) module consists of an array of small diameter (∼ 1 mm) vertical strings with hot liquid coolant flowing down them due to gravity. A low- or near-zero vapor pressure liquid coolant is essential to minimize/eliminate coolant loss. Consequently, liquids such as Ionic Liquids and Silicone oils are ideal candidates for the coolant. The liquid film thickness is of the order of 1 mm. Gas (ambient air) flowing upwards cools the hot liquid coolant. Onset of fluid instabilities (Rayleigh-Plateau and/or Kapitza instabilities) result in the formation of a liquid beads, which enhance heat transfer due to additional mixing. The key to successfully designing and operating DILSHE is understanding the fundamentals of the liquid film fluid dynamics and heat transfer and developing an operational performance map. As a first step towards achieving these goals, we have undertaken a parametric experimental and numerical study to investigate the fluid dynamics of thin liquid films flowing down small diameter strings. Silicone oil and air are the working fluids in the experiments. The experiments were performed with a single nylon sting (fishing line) of diameter = 0.61 mm and height = 1.6 m. The inlet temperature of both liquid and air were constant (∼ 20 °C). In the present set of experiments the variables that were parametrically varied were: (i) liquid mass flow rate (0.05 to 0.23 g/s) and (ii) average air velocity (0 to 2.7 m/s). Visualization of the liquid flow was performed using a high-speed camera. Parameters such as base liquid film thickness, liquid bead shape and size, velocity (and hence frequency) of beads were measured from the high-speed video recordings. The effect of gas velocity on the dynamics of the liquid beads was compared to data available in the open literature. Within the range of gas velocities used in the experiments, the occurrence of liquid hold up and/or liquid blow over, if any, were also identified. Numerical simulations of the two-phase flow are currently being performed. The experimental results will be invaluable in validation/refinement of the numerical simulations and development of the operational map.


Sign in / Sign up

Export Citation Format

Share Document