Numerical Simulation of Super-Lift Coefficient of Co-Flow Jet Flow Control Wing

Author(s):  
Yunchao Yang ◽  
Gecheng Zha
Author(s):  
Jiasong Wang ◽  
Hua Liu ◽  
Fei Gu ◽  
Pengliang Zhao

Attaching a splitter plate (SP) on the base of a riser wall is used to control the flow of risers and evaluated by using the CFD technique in this paper. A finite-volume total variation diminishing (TVD) approach for solving incompressible turbulent flow with renormalization group (RNG) turbulence model was used to simulate the hydrodynamic characteristics of the riser system with additional SP for the different aspect ratio of length to diameter L/D. It was shown that the present numerical method has high order of accuracy by comparing with the available experimental and numerical simulation data for typical circular cylinder flow. A riser system attached with SPs of L/D = 0.5∼2.0 for Reynolds number 1000, and 30000 respectively can obviously reduce the lift and drag coefficient and alter the vortex shedding frequency. The mean drag coefficient can be reduced up to 20% and 35% and the maximum lift coefficient can be reduced up to 94% and 97%, for Re = 1000 and 30000, respectively. The lift can be effectively suppressed after a relative long time. L/D = 0.5∼1.0 may be considered as more practical geometries considering the real conditions, which also have good flow control effect.


1996 ◽  
Author(s):  
V. Kibens ◽  
D. Parekh ◽  
D. Bingaman ◽  
A. Glezer ◽  
M. Mossman ◽  
...  

2017 ◽  
Vol 79 (7-3) ◽  
Author(s):  
Iham F. Zidane ◽  
Khalid M. Saqr ◽  
Greg Swadener ◽  
Xianghong Ma ◽  
Mohamed F. Shehadeh

Gulf and South African countries have enormous potential for wind energy. However, the emergence of sand storms in this region postulates performance and reliability challenges on wind turbines. This study investigates the effects of debris flow on wind turbine blade performance. In this paper, two-dimensional incompressible Navier-Stokes equations and the transition SST turbulence model are used to analyze the aerodynamic performance of NACA 63415 airfoil under clean and sandy conditions. The numerical simulation of the airfoil under clean surface condition is performed at Reynolds number 460×103, and the numerical results have a good consistency with the experimental data. The Discrete Phase Model has been used to investigate the role sand particles play in the aerodynamic performance degradation. The pressure and lift coefficients of the airfoil have been computed under different sand particles flow rates. The performance of the airfoil under different angle of attacks has been studied. Results showed that the blade lift coefficient can deteriorate by 28% in conditions relevant to the Gulf and South African countries sand storms. As a result, the numerical simulation method has been verified to be economically available for accurate estimation of the sand particles effect on the wind turbine blades.


Sign in / Sign up

Export Citation Format

Share Document