Interaction between a Jet emitted by a Fluidic Oscillator and a Crossflow at a Skew Angle

Author(s):  
Florian Ostermann ◽  
Rene Woszidlo ◽  
Christian Nayeri ◽  
Christian O. Paschereit
2021 ◽  
pp. 2000112
Author(s):  
Tom Dillon ◽  
Caglar Ozturk ◽  
Keegan Mendez ◽  
Luca Rosalia ◽  
Samuel Dutra Gollob ◽  
...  

1970 ◽  
Vol 10 (01) ◽  
pp. 57-65 ◽  
Author(s):  
C.R. Peterson

Abstract An experimental technique is described in which three component forces are measured while a typical toothed cutter is rolled in a straight line over a rock sample. The technique includes the attainment of a steady state in which volume-averaged penetration is correlated with average force during penetration is correlated with average force during the removal of several layers from the rock surface. Simple rolling and skewed rolling forces are measured. The cutter was artificially dulled for some of the measurements. Surprisingly little variation in force requirement is noted. A qualitative explanation is suggestedThe normal force requirement is substantially reduced when the cutter is skewed. A theoretical description of the force reduction is presented, showing reasonable agreement with the observed behavior in terms of cutter radius, tooth width, penetration and skew angle. penetration and skew angle Introduction Toothed roller cutters have long been in use on tricone bits, and they are in common use on boring machines. Yet the designer of boring machines is still faced with a dearth of good design information on the performance of such cutters. For example, what are the relationships between thrust, power, and penetration rate? How are these relationships influenced by rock properties and cutter configuration?While the data presented here provide answers to more specific questions than those mentioned above, these data are necessary for arriving at solutions to the broader questions. This work is restricted to one tooth type, typical of the wedge-shaped steel teeth used on medium rock. A limited range of rock types was tested; this coupled with the extreme variation of rock drillability, renders the data of limited value in predicting penetration rate. But the designer must predicting penetration rate. But the designer must answer questions even more important than the prediction of absolute penetration rate. For example, prediction of absolute penetration rate. For example, the cutter normal force is usually known in terms of the thrust to be applied to the cutter head. What is the torque or power required to rotate the cutter head? For an answer, one need know only the ratio of normal force to the tangential or rolling force. This ratio may be estimated from the present data. Variation of this ratio is reasonably small from one rock to another so that, lacking more specific information, these data can provide at least rough design estimates for other rocks. Tricone bits for soft to medium rock usually are constructed with skewed cutter elements that provide a "gouging and scraping action". Whatever the explanation, skewed cutters do provide increased drilling rate or, for a given drilling rate, a decreased thrust requirement. To my knowledge, skewed cutter elements have not been used on boring machines. If they were, bearing load could be reduced at a given penetration rate, or, conversely, an increased penetration rate could be obtained at the same penetration rate could be obtained at the same bearing load. Of course, a side load is introduced to the cutter bearing and this must be provided for. As for the rolling force, the designer really needs only the ratio of side-to-normal load. The present data indicate that this ratio is quite independent of rock type. The magnitude of the force reduction to be expected with skewed cutters is also of interest. The present data indicate that substantial reductions might be expected. A simple analytical model predicts the observed reduction reasonably well on the basis of the limited data available. EXPERIMENTAL APPARATUS AND TECHNIQUES Forces produced by a single cutter wheel rolling in a straight line over the rock specimen were measured. This simple geometry is experimentally convenient and is thought to be reasonably representative of cutter conditions on a large boring machine. Fig 1 illustrates the "linear apparatus" on which the measurements were made. The cutter wheel was rotatably mounted in a heavy yoke. SPEJ P. 57


1988 ◽  
Vol 138 ◽  
Author(s):  
S. J. Miles ◽  
G. S. Green ◽  
B. K. Tanner ◽  
M. A. G. Halliwell ◽  
M. H. Lyons

Author(s):  
Sarah Gaertlein ◽  
Rene Woszidlo ◽  
Florian Ostermann ◽  
C. Nayeri ◽  
Christian O. Paschereit

1999 ◽  
Vol 122 (3) ◽  
pp. 313-317 ◽  
Author(s):  
A. M. Farag ◽  
A. S. Ashour

The main purpose of this paper is to develop a fast converging semianalytical method for assessing the vibration effect on thin orthotropic skew (or parallelogram/oblique) plates. Since the geometry of the skew plate is not helpful in the mathematical treatments, the analysis is often performed by more complicated and laborious methods. A successive conjunction of the Kantorovich method and the transition matrix is exploited herein to develop a new modification of the finite strip method to reduce the complexity of the problem. The displacement function is expressed as the product of a basic trigonometric series function in the longitudinal direction and an unknown function that has to be determined in the other direction. Using the new transition matrix, after necessary simplification and the satisfaction of the boundary conditions, yields a set of simultaneous equations that leads to the characteristic matrix of vibration. The influence of the skew angle, the aspect ratio, the properties of orthotropy, and the prescribed boundary conditions are investigated. Convergence of the solution is investigated and the accuracy of the results is compared with that available from other numerical methods. The numerical results show that the convergence is rapidly deduced and the comparisons agree very well with known results. [S0739-3717(00)00202-6]


1996 ◽  
Vol 39 (2) ◽  
pp. 173-175
Author(s):  
P. A. Aristov ◽  
G. V. Belousov ◽  
V. S. Evsyutkin ◽  
V. A. Khlyst ◽  
A. M. Kipnis
Keyword(s):  

1996 ◽  
Vol 32 (5) ◽  
pp. 3866-3868 ◽  
Author(s):  
Sheng-Bin Hu ◽  
Bo Liu ◽  
Teck-Seng Low
Keyword(s):  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Suiwen Wu ◽  
Junfeng Jia ◽  
Chiyu Jiao ◽  
Junfei Huang ◽  
Jianzhong Li

AbstractSkew bridges with seat-type abutments are frequently unseated in earthquakes due to large transverse displacements at their acute corners. It is believed these large displacements are due to in-plane rotation of the superstructure. Lack of detailed guidelines for modeling of skew bridges, many current design codes give empirical expressions rather than theoretical solutions for the additional support length required in skew bridges to prevent unseating. In this paper, a parametric study has been carried out to study the influence of skew angle, aspect ratio and fundamental periods of bridges on the additional support length requirements of single-span bridges due to skew using a shake table experiment validated Simplified Method, which is capable of simulating gap closure based on response spectrum analysis. This method is developed based on the premise that the obtuse corner of the superstructure engages the adjacent back wall during lateral loading and rotates about this corner until the loading reverses direction. A design response spectrum specified in AASHTO LRFD Specifications was employed to represent the design-level earthquakes. The results show the additional length required to prevent unseating due to skew increases with the skew angle in an approximately linear manner when the angle is less than a critical value and decreases for angles above this value. This critical skew angle increases with the aspect ratio approximately in a linear manner and shows negligible dependence on the fundamental periods of the bridges, and combination of span length and width. In addition, the critical skew angle varies between 58° and 66°, when the aspect ratio is varied from 3.0 to 5.0. The results also show that the empirical formulas for minimum support length requirements of skew bridges in current codes and specifications can not accurately reflect the influence of skew.


2007 ◽  
Vol 129 (8) ◽  
pp. 1038-1047 ◽  
Author(s):  
Rong Fung Huang ◽  
Kuo Tong Chang

The evolution process and turbulence properties of a transversely oscillating flow induced by a fluidic oscillator are studied in a gravity-driven water tunnel. A planar jet is guided to impinge a specially designed crescent surface of a target blockage that is enclosed in a cavity of a fluidic oscillator. The geometric configuration of the cavity transforms the inherent stability characteristics of the jet from convective instability to absolute instability, so that the jet precedes the persistent back and forth swinging in the cavity. The swinging jet is subsequently directed through two passages and issued alternatively out of the fluidic oscillator. Two short plates are installed near the exits of the alternatively issuing pulsatile jets to deflect the jets toward the central axis. The deflected jets impinge with each other and form a pair of counter-rotating vortices in the near wake of the oscillator with a stagnation point at the impingement point. The stagnation point of the counter-rotating vortex pair moves back and forth transversely because of the phase difference existing between the two issued jets. The merged flow evolving from the counter-rotating vortices formed by the impingement of the two pulsatile jets therefore presents complex behavior of transverse oscillation. The topological models corresponding to the flow evolution are constructed to illustrate the oscillation process of the oscillating flow. Significant momentum dispersion and large turbulence intensity are induced by the transverse oscillation of the merged flow. The statistical turbulence properties show that the Lagrangian integral time and length scales of the turbulence eddies (the fine-scale structure) produced in the oscillating flow are drastically reduced.


Sign in / Sign up

Export Citation Format

Share Document