scholarly journals Collocation-Based Output-Error Method for Aircraft System Identification

Author(s):  
Dimas A. Dutra
Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2955 ◽  
Author(s):  
Franciszek Dul ◽  
Piotr Lichota ◽  
Artur Rusowicz

In this paper, the full tracking problem in aircraft system identification and control is presented. Time domain output error method with maximum likelihood principle was used to perform system identification. The linear quadratic regulator (LQR)-based approach has been used for solving aviation full tracking problems in aviation. It has been shown that the generalized nonlinear LQR control is able to handle such problems even in case of inaccurate measurements and in the presence of moderate disturbances provided that the model of an aircraft is properly identified.


2017 ◽  
Vol 64 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Piotr Lichota ◽  
Joanna Szulczyk

Abstract This article investigates unstable tiltrotor in hover system identification from flight test data. The aircraft dynamics was described by a linear model defined in Body-Fixed-Coordinate System. Output Error Method was selected in order to obtain stability and control derivatives in lateral motion. For estimating model parameters both time and frequency domain formulations were applied. To improve the system identification performed in the time domain, a stabilization matrix was included for evaluating the states. In the end, estimates obtained from various Output Error Method formulations were compared in terms of parameters accuracy and time histories. Evaluations were performed in MATLAB R2009b environment.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zhigang Wang ◽  
Aijun Li ◽  
Lihao Wang ◽  
Xiangchen Zhou ◽  
Boning Wu

Purpose The purpose of this paper is to propose a new aerodynamic parameter estimation methodology based on neural network and output error method, while the output error method is improved based on particle swarm algorithm. Design/methodology/approach Firstly, the algorithm approximates the dynamic characteristics of aircraft based on feedforward neural network. Neural network is trained by extreme learning machine, and the trained network can predict the aircraft response at (k + 1)th instant given the measured flight data at kth instant. Secondly, particle swarm optimization is used to enhance the convergence of Levenberg–Marquardt (LM) algorithm, and the improved LM method is used to substitute for the Gauss Newton algorithm in output error method. Finally, the trained neural network is combined with the improved output error method to estimate aerodynamic derivatives. Findings Neither depending on the initial guess of the parameters to be estimated nor requiring numerical integration of the aircraft motion equation, the proposed algorithm can be used for unstable aircraft and is successfully applied to extract aerodynamic derivatives from both simulated and real flight data. Research limitations/implications The proposed method requires iterative calculation and can only identify parameters offline. Practical implications The proposed method is successfully applied to estimate aircraft aerodynamic parameters and can also be used as a new algorithm for other optimization problems. Originality/value In this study, the output error method is improved to reduce the dependence on the initial value of parameters and expand its application scope. It is applied in aircraft aerodynamic parameter identification together with neural network.


2021 ◽  
Vol 24 (5) ◽  
pp. 1601-1618
Author(s):  
Abir Mayoufi ◽  
Stéphane Victor ◽  
Manel Chetoui ◽  
Rachid Malti ◽  
Mohamed Aoun

Abstract This paper deals with system identification for continuous-time multiple-input single-output (MISO) fractional differentiation models. An output error optimization algorithm is proposed for estimating all parameters, namely the coefficients and the differentiation orders. Given the high number of parameters to be estimated, the output error method can converge to a local minimum. Therefore, an initialization procedure is proposed to help the convergence to the optimum by using three variants of the algorithm. Moreover, a new definition of structured-commensurability (or S-commensurability) has been introduced to cope with the differentiation order estimation. First, a global S-commensurate order is estimated for all subsystems. Then, local S-commensurate orders are estimated (one for each subsystem). Finally the S-commensurability constraint being released, all differentiation orders are further adjusted. Estimating a global S-commensurate order greatly reduces the number of parameters and helps initializing the second variant, where local S-commensurate orders are estimated which, in turn, are used as a good initial hit for the last variant. It is known that such an initialization procedure progressively increases the number of parameters and provides good efficiency of the optimization algorithm. Monte Carlo simulation analysis are provided to evaluate the performances of this algorithm.


Sign in / Sign up

Export Citation Format

Share Document