control derivatives
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Mohsen Rostami ◽  
Joon Chung ◽  
Daniel Neufeld

An engineering approach is presented to analyse the asymmetric blade thrust effect with the help of analytical and semi-empirical methods. It is shown that the contribution of the asymmetric blade thrust effect in the lateral-directional stability of multi-engine propeller-driven aircraft is significant particularly in critical flight conditions with one engine out of service. Also, in some cases where the engines are rotating in one direction, the asymmetric blade effect has substantial effects on the handling qualities of the aircraft even in normal flight conditions. Overall, due to the significant contribution of this phenomenon in the lateral-directional stability of propeller-driven airplanes, it is important to consider it in the design of the vertical stabilizer and rudder. The resulting analytical method has been used to determine the vertical tail incident angle and desired rudder deflection in accordance with the most critical flight condition for two different cases and validated to ensure the accuracy of the result. In this work, the aerodynamic coefficients as well as the stability and control derivatives have been predicted using analytical and semi-empirical methods validated for light aircraft.


Author(s):  
Dheeraj Agarwal ◽  
Linghai Lu ◽  
Gareth D. Padfield ◽  
Mark D. White ◽  
Neil Cameron

High-fidelity rotorcraft flight simulation relies on the availability of a quality flight model that further demands a good level of understanding of the complexities arising from aerodynamic couplings and interference effects. One such example is the difficulty in the prediction of the characteristics of the rotorcraft lateral-directional oscillation (LDO) mode in simulation. Achieving an acceptable level of the damping of this mode is a design challenge requiring simulation models with sufficient fidelity that reveal sources of destabilizing effects. This paper is focused on using System Identification to highlight such fidelity issues using Liverpool's FLIGHTLAB Bell 412 simulation model and in-flight LDO measurements from the bare airframe National Research Council's (Canada) Advanced Systems Research Aircraft. The simulation model was renovated to improve the fidelity of the model. The results show a close match between the identified models and flight test for the LDO mode frequency and damping. Comparison of identified stability and control derivatives with those predicted by the simulation model highlight areas of good and poor fidelity.


2020 ◽  
Author(s):  
Guilherme N. Barufaldi ◽  
Marcus H. Victor Jr. ◽  
Henrique W. R. Pereira ◽  
Roberto G. A. da Silva

Small unmanned aerial vehicles (UAVs) face flying quality problems different from those encountered by larger aircraft. The lower airspeeds and small dimensions make these vehicles more susceptible to gusts and stability and control issues, which may render the aircraft difficult to fly. Moreover, due to many factors, UAVs are often built with a considerable degree of uncertainty regarding their aerodynamic properties and flying quality. The resulting aircraft may present poor stability and handling characteristics. This work presents the conceptual design of a robust stability augmentation system (SAS), aimed at increasing stability characteristics and protecting aircraft prone to flying quality problems. In order to deal with parametric uncertainties, the controller was designed with the robust H-infinity technique. The design process is presented, and a parametric aircraft model is provided, together with longitudinal stability and control derivatives. Simulations are presented to show the effects of the controller on the aircraft behavior.


Aerospace ◽  
2020 ◽  
Vol 7 (8) ◽  
pp. 113
Author(s):  
Piotr Lichota

Designing a reconfiguration system for an aircraft requires a good mathematical model of the object. An accurate model describing the aircraft dynamics can be obtained from system identification. In this case, special maneuvers for parameter estimation must be designed, as the reconfiguration algorithm may require to use flight controls separately, even if they usually work in pairs. The simultaneous multi-axis multi-step input design for reconfigurable fixed-wing aircraft system identification is presented in this paper. D-optimality criterion and genetic algorithm were used to design the flight controls deflections. The aircraft model was excited with those inputs and its outputs were recorded. These data were used to estimate stability and control derivatives by using the maximum likelihood principle. Visual match between registered and identified outputs as well as relative standard deviations were used to validate the outcomes. The system was also excited with simultaneous multisine inputs and its stability and control derivatives were estimated with the same approach as earlier in order to assess the multi-step design.


2020 ◽  
Vol 92 (3) ◽  
pp. 452-459 ◽  
Author(s):  
Piotr Lichota ◽  
Mariusz Jacewicz ◽  
Joanna Szulczyk

Purpose The purpose of this paper is to present the methodology that was used to design a system identification experiment of a generic spinning gasodynamic projectile. For this object, because the high-speed spinning motion, it was not possible to excite the aircraft motion along body axes independently. Moreover, it was not possible to apply simultaneous multi-axes excitations because of the short time in which system identification experiments can be performed (multi-step inputs) or because it is not possible to excite the aircraft with a complex input (multi-sine signals) because of the impulse gasodynamic engines (lateral thrusters) usage. Design/methodology/approach A linear projectile model was used to obtain information about identifiability regions of stability and control derivatives. On this basis various sets of lateral thrusters’ launching sequences, imitating continuous multi-step inputs were used to excite the nonlinear projectile model. Subsequently, the nonlinear model for each excitation set was identified from frequency responses, and the results were assessed. For comparison, the same approach was used for the same projectile exited with aerodynamic controls. Findings It was found possible to design launching sequences of lateral thrusters that imitate continuous multi-step input and allow to obtain accurate system identification results in specified frequency range. Practical implications The designed experiment can be used during polygonal shooting to obtain a true projectile aerodynamic model. Originality/value The paper proposes a novel approach to gasodynamic projectiles system identification and can be easily applied for similar cases.


Sign in / Sign up

Export Citation Format

Share Document