scholarly journals Conceptual Design Studies of Short Range Aircraft Configurations with Hybrid Electric Propulsion

Author(s):  
Michael Iwanizki ◽  
Max Arzberger ◽  
Martin Plohr ◽  
Daniel Silberhorn ◽  
Tobias Hecken
Author(s):  
Vasilis Gkoutzamanis ◽  
Mavroudis D. Kavvalos ◽  
Arjun Srinivas ◽  
Doukaini Mavroudi ◽  
George Korbetis ◽  
...  

Abstract This work focuses on the feasibility of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200-600 nautical miles. Its ambition is to answer to research questions, during the evaluation and design of aircraft based on electric propulsion architectures. The potential entry into service of such aircraft is foreseen in 2030. A literature review is performed, to identify similar concepts developed globally. After the requirements' definition, the first level of conceptual design is employed. Following a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described, to explore the basis of the design space. Additionally, a methodology for the energy storage positioning is provided, highlighting the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/parallel partial hybrid) and the energy storage specifications. The design choices are driven by the aim to reduce CO2 emissions and accommodate boundary layer ingestion engines, with aircraft electrification. The results show that it is not possible to fulfil the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the far-fetched battery necessities. It is also highlighted that compliance with airworthiness certifications is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have higher energy efficiency (12% lower energy consumption and larger CO2 reduction), compared to the higher degree of hybridization (50%), with respect to the conventional configuration.


2020 ◽  
Author(s):  
Tobias Hecken ◽  
Xin Zhao ◽  
Michael Iwanizki ◽  
Max J. Arzberger ◽  
Daniel Silberhorn ◽  
...  

Energy ◽  
2020 ◽  
Vol 204 ◽  
pp. 117937 ◽  
Author(s):  
David Sziroczak ◽  
Istvan Jankovics ◽  
Istvan Gal ◽  
Daniel Rohacs

Author(s):  
Jo Köhler ◽  
Peter Jeschke

AbstractThis paper presents a novel conceptual design method for electric and hybrid electric propulsion systems in small aircraft. The effects of key design parameters on the propulsion system performance are analyzed and the advantages and drawbacks of the investigated propulsion systems are discussed on the basis of two sets of thrust requirements. First, the general conceptual design algorithm is outlined. This is followed by a description of the three propulsion systems investigated: the fully electric; the parallel hybrid; and the conventional internal combustion engine. Scalable models of all required propulsion system components are presented, including weight estimation and operating characteristics. Afterwards, the conceptual design algorithm is exemplified for a reference two-seater motorized glider with a cruising speed of 140 kt and a maximum take-off mass of 1000 kg. Key design parameters are identified and their impact on propulsion system mass and cruise efficiency discussed. This study suggests that the parallel hybrid propulsion system is advantageous for high power ratios between take-off and cruise. For a power ratio of 4.5, either a relative cruise efficiency advantage of 12% or a maximum system mass advantage of 10% can be expected, depending on the propeller design. For the chosen cruise range of 300 km, the system mass of the fully electric propulsion system is at least 2.37 times higher when compared to the conventional propulsion system. In summary, a design method for hybrid electric propulsion systems is presented here which may be used for conceptual design. Furthermore, the suitability of the propulsion systems under investigation for different sets of thrust requirements is assessed, which may be helpful for aircraft designers.


2021 ◽  
Vol 22 ◽  
pp. 19
Author(s):  
Giuseppe Palaia ◽  
Davide Zanetti ◽  
Karim Abu Salem ◽  
Vittorio Cipolla ◽  
Vincenzo Binante

The aviation world is dealing with the development of new and greener aviation. The need for reducing greenhouse gas emission as well as the noise is a critical requirement for the aviation of the future. The aviation world is struggling with it, and a compelling alternative can be the electric propulsion. This work aims to present THEA-CODE, a tool for the conceptual design of hybrid-electric aircraft. The tool evaluates the potential benefits of the electric propulsion in terms of fuel burnt and direct and indirect CO2 emissions. THEA-CODE is suitable not only for conventional “wing-tube” configurations but also for unconventional ones, such as the box-wing. The results show a significant reduction of fuel burnt adopting batteries with energy density higher than the current state of the art. A procedure to find the potential best compromise configurations is presented as well.


Author(s):  
Aleksandr LEVANDOVICH ◽  
◽  
Dmitry MOSIN ◽  
Aleksandr TYUTYUKIN ◽  
Igor URTMINTSEV ◽  
...  

The paper presents results of conceptual design studies to determine configuration of an electrically propelled upper (a space tug) with main engines arrays. It addresses the problem stage (EPUS) — a space transportation stage based on electric propulsion powered by solar of deploying a multi-plane orbital constellation of to in of small spacecraft (SSC) using an electrically propelled upper stage. It proposes change the SSC operational orbital planes based on the effect of precession rates between the parking and the working orbits eccentricity in the Earth gravitational field. Requirements owing have the difference to the effect been defined for the EPUS electrical propulsion system that take into account the need to operate it to offset the aerodynamic drag while waiting in the parking orbit for the SSC operational orbital plane to turn. It demonstrates the feasibility of employing four EPUS that use Stationary Plasma Thruster-type electric propulsion as their main engines and gallium arsenide solar arrays for deployment in a 600 km orbit in four planes an orbital constellation of 24 small spacecraft with a mass of ~250 kg each using one launch of a medium capacity launch vehicle of Soyuz-2.1b type.


Author(s):  
Vasilis G. Gkoutzamanis ◽  
Arjun Srinivas ◽  
Doukaini Mavroudi ◽  
Anestis I. Kalfas ◽  
Mavroudis D. Kavvalos ◽  
...  

Abstract This work focuses on the feasibility of a 19-passenger hybrid-electric aircraft, to serve the short-haul segment within the 200–600 nautical miles. Its ambition is to answer some dominating research questions, during the evaluation and design of aircraft based on electric propulsion architectures. The potential entry into service of such aircraft is foreseen in 2030. A literature review is performed, to identify similar concepts that are under research and development. After the requirements definition, the first level of conceptual design is employed. Based on a set of assumptions, a methodology for the sizing of the hybrid-electric aircraft is described to explore the basis of the design space. Additionally, a methodology for the energy storage positioning is provided, to highlight the multidisciplinary aspects between the sizing of an aircraft, the selected architecture (series/parallel partial hybrid) and the energy storage operational characteristics. The design choices are driven by the aim to reduce CO2 emissions and accommodate boundary layer ingestion engines, with aircraft electrification. The results show that it is not possible to fulfill the initial design requirements (600 nmi) with a fully-electric aircraft configuration, due to the far-fetched battery necessities. It is also highlighted that compliance with airworthiness certifications is favored by switching to hybrid-electric aircraft configurations and relaxing the design requirements (targeted range, payload, battery technology). Finally, the lower degree of hybridization (40%) is observed to have a higher energy efficiency (12% lower energy consumption and larger CO2 reduction), compared to the higher degree of hybridization (50%), with respect to the conventional configuration.


Author(s):  
Aleksandr V. LEVANDOVICH ◽  
Dmitry A. MOSIN ◽  
Viktor V. SINYAVSKIY ◽  
Aleksandr Ye. TYUTYUKIN ◽  
Igor A. UPTMINTSEV

The paper presents results of conceptual design studies to determine configuration of an electrically propelled upper stage (EPUS) – a space transportation stage (a space tug) with main engines based on electric propulsion powered by solar arrays. It addresses the problem of deploying a multi-plane orbital constellation of small spacecraft (SSC) using an electrically propelled upper stage. It proposes to change the SSC operational orbital planes based on the effect of the difference in precession rates between the parking and the working orbits owing to the effect of eccentricity in the Earth gravitational field. Requirements have been defined for the EPUS electrical propulsion system that take into account the need to operate it to offset the aerodynamic drag while waiting in the parking orbit for the SSC operational orbital plane to turn. It demonstrates the feasibility of employing four EPUS that use Stationary Plasma Thruster-type electric propulsion as their main engines and gallium arsenide solar arrays for deployment in a 600 km orbit in four planes an orbital constellation of 24 small spacecraft with a mass of ~250 kg each using one launch of a medium capacity launch vehicle of Soyuz-2.1b type. Key words: Electrically propelled upper stage, electric propulsion, small spacecraft, orbital constellation.


Sign in / Sign up

Export Citation Format

Share Document