Closed Loop Integration of a Rotating Detonation Combustor in a T63 Gas Turbine Engine

2021 ◽  
Author(s):  
Robert T. Fievisohn ◽  
John Hoke ◽  
Ryan T. Battelle ◽  
Christopher Klingshirn ◽  
Adam T. Holley ◽  
...  
Author(s):  
Mehrdad Pakmehr ◽  
Nathan Fitzgerald ◽  
Eric M. Feron ◽  
Jeff S. Shamma ◽  
Alireza Behbahani

A stable gain scheduled controller for a gas turbine engine that drives a variable pitch propeller is developed and described. A stability proof is developed for gain scheduled closed-loop system using global linearization and linear matrix inequality (LMI) techniques. Using convex optimization tools, a single quadratic Lyapunov function is computed for multiple linearizations near equilibrium and nonequilibrium points of the nonlinear closed-loop system. This approach guarantees stability of the closed-loop gas turbine engine system. To verify the stability of the closed-loop system on-line, an optimization problem is proposed, which is solvable using convex optimization tools. Simulation results show that the developed gain scheduled controller is capable to regulate a turboshaft engine for large thrust commands in a stable fashion with proper tracking performance.


Author(s):  
Mehrdad Pakmehr ◽  
Nathan Fitzgerald ◽  
Eric M. Feron ◽  
Jeff S. Shamma ◽  
Alireza Behbahani

We develop and describe a stable gain scheduling controller for a gas turbine engine that drives a variable pitch propeller. A stability proof is developed for gain scheduled closed-loop system using global linearization and linear matrix inequality (LMI) techniques. Using convex optimization tools, a single quadratic Lyapunov function is computed for multiple linearizations near equilibrium and non-equilibrium points of the nonlinear closed-loop system. This approach guarantees stability of the closed-loop gas turbine engine system. Simulation results show the developed gain scheduling controller is capable of regulating a turboshaft engine for large thrust commands in a stable fashion with proper tracking performance.


Author(s):  
B. M. Antkowiak ◽  
F. C. Nelson

This paper summarizes the development of a finite element rotordynamic solution used in a closed loop simulation for a magnetic bearing rotor system in a gas turbine engine. A magnetic bearing controlled rotor is analyzed, and the state dynamics matrix [A], the shaft control influence matrix [B], and the sensor matrix [C] are constructed. Bode plots of the state-space transfer function are also constructed and compared to the results of the rotor dynamic model.


2017 ◽  
Vol 195 ◽  
pp. 247-256 ◽  
Author(s):  
Jorge Sousa ◽  
Guillermo Paniagua ◽  
Elena Collado Morata

1998 ◽  
Vol 120 (3) ◽  
pp. 621-625 ◽  
Author(s):  
B. M. Antkowiak ◽  
F. C. Nelson

This paper summarizes the development of a finite element rotordynamic solution used in a closed loop simulation for a magnetic bearing rotor system in a gas, turbine engine. A magnetic bearing controlled rotor is analyzed, and the state dynamics matrix [A], the shaft control influence matrix [B], and the sensor matrix [C] are constructed. Bode plots of the state-space transfer function are also constructed and compared to the results of the rotor dynamic model.


Author(s):  
Geo. A. Richards ◽  
Jimmy D. Thornton ◽  
Edward H. Robey ◽  
Leonell Arellano

Combustion dynamics is a prominent problem in the design and operation of low-emission gas turbine engines. Even modest changes in fuel composition, or operating conditions can lead to damaging vibrations in a combustor that was otherwise stable. For this reason, active control has been sought to stabilize combustors that must accommodate fuel variability, new operating conditions, etc. Active control of combustion dynamics has been demonstrated in a number of laboratories, single-nozzle test combustors, and even on a fielded engine. In most of these tests, active control was implemented with closed-loop feedback between the observed pressure signal and the phase and gain of imposed fuel perturbations. In contrast, a number of recent papers have shown that open-loop fuel perturbations can disrupt the feedback between acoustics and heat release that drives the oscillation. Compared to the closed-loop case, this approach has some advantages because it may not require high-fidelity fuel actuators, and could be easier to implement. This paper reports experimental tests of open-loop fuel perturbations to control combustion dynamics in a complete gas turbine engine. Results demonstrate the technique was very successful on the test engine, and had minimal effect on pollutant emissions.


Sign in / Sign up

Export Citation Format

Share Document