Development of a High Efficiency System with a Rotating Detonation Engine for a Gas Turbine Engine (RDE-GTE) using Pressure Gain Combustion

Author(s):  
A. Koichi Hayashi ◽  
Xinmeng Tang ◽  
Nobuyuki Tsuboi ◽  
Kohei Ozawa ◽  
Kazuhiro Ishii ◽  
...  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Michal Folusiak ◽  
Karol Swiderski ◽  
Piotr Wolański

AbstractThe idea of using the phenomenon of rotating detonation to propulsion has its roots in fifties of the last century in works of Adamson et al. and Nicholls et al. at the University of Michigan. The idea was recently reinvented and experimental research and numerical simulations on the Rotating Detonation Engine (RDE) are carried in numerous institutions worldwide, in Poland at Warsaw University of Technology (WUT) since 2004. Over the period 2010-2014 WUT and Institute of Aviation (IOA) jointly implemented the project under the Innovative Economy Operational Programme entitled ‘Turbine engine with detonation combustion chamber’. The goal of the project was to replace the combustion chamber of turboshaft engine GTD-350 with the annular detonation chamber.This paper is focused on investigation of the influence of a geometry and flow conditions on the structure and propagation stability of the rotating detonation wave. Presented results are in majority an outcome of the aforementioned programme, in particular authors’ works on the development of the in-house code REFLOPS USG and its application to simulation of the rotating detonation propagation in the RDE.


Author(s):  
Hideo Kobayashi ◽  
Shogo Tsugumi ◽  
Yoshio Yonezawa ◽  
Riuzou Imamura

IHI is developing a new heavy duty gas turbine engine for 2MW class co-generation plants, which is called IM270. This engine is a simple cycle and single-spool gas turbine engine. Target thermal efficiency is the higher level in the same class engines. A dry low NOx combustion system has been developed to clear the strictest emission regulation in Japan. All parts of the IM270 are designed with long life for low maintenance cost. It is planned that the IM270 will be applied to a dual fluid system, emergency generation plant, machine drive engine and so on, as shown in Fig.1. The development program of IM270 for the co-generation plant is progress. The first prototype engine test has been started. It has been confirmed that the mechanical design and the dry low NOx system are practical. The component tuning test is being executed. On the other hand, the component test is concurrently in progress. The first production engine is being manufactured to execute the endurance test using a co-generation plant at the IHI Kure factory. This paper provides the conceptual design and status of the IM270 basic engine development program.


Author(s):  
J. W. Watts ◽  
T. E. Dwan ◽  
R. W. Garman

A two-and-one-half spool gas turbine engine was modeled using the Advanced Computer Simulation Language (ACSL), a high level simulation environment based on FORTRAN. A possible future high efficiency engine for powering naval ships is an intercooled, regenerated (ICR) gas turbine engine and these features were incorporated into the model. Utilizing sophisticated instructions available in ACSL linear state-space models for this engine were obtained. A high level engineering computational language, MATLAB, was employed to exercise these models to obtain optimal feedback controllers characterized by the following methods: (1) state feedback; (2) linear quadratic regulator (LQR) theory; and (3) polygonal search. The methods were compared by examining the transient curves for a fixed off-load, and on-load profile.


Author(s):  
G. L. Padgett ◽  
W. W. Davis

In response to the needs of the market place for turbines in the 5000 to 6000 hp class, Solar Turbines Incorporated has responded with an uprate of their Centaur engine. Discussed in this paper are the features of the uprated engine, the Development Plan and the methodology for incorporating into the design the advanced aerodynamic and mechanical technology of the Mars engine. The Mars engine is a high efficiency 12,500 hp engine which operates at a turbine inlet temperature of 1935°F. State-of-the-art computer aided methods have been applied to produce the design, and the results from this approach are displayed.


1948 ◽  
Vol 159 (1) ◽  
pp. 230-244 ◽  
Author(s):  
D. G. Ainley

The advent of the gas-turbine engine, with its absolute dependence on high component efficiencies for reasonable economic operation, and the necessity for new materials which will withstand high stresses at much greater temperatures than encountered on steam turbines, has led engineers to review the design of turbines closely both from an aerodynamic and a mechanical standpoint: there is still a great deal to be learnt. Reeman† has outlined the present mathematical approach to the design of turbines and surveyed very comprehensively the mechanical problems that are involved. This paper is intended to indicate the manner in which the aerodynamic design of a turbine has developed from that of its steam predecessor and, in particular, surveys some recent experimental work relating to turbine performance. The general aims of the experimental work are to explore the gas-flow processes within a turbine stage, to determine the associate aerodynamic efficiencies, and to gain some understanding of the limitations imposed upon the aerodynamic design of a stage by the necessity for the high efficiency which is required for economic operation of a gas-turbine engine. The data that have so far come to light, though incomplete, illustrate the general overall characteristics of high- and low-reaction turbines, and also the effect that high Mach number or low Reynolds number may have on turbine performance. To conclude the paper, a brief description of the technique adopted for adequate full-scale testing of turbines is presented. This covers the essential points of, power absorption, instrumentation, and safety precaution. The effects of errors in measurements are also discussed.


Shock Waves ◽  
2021 ◽  
Author(s):  
P. Wolański

AbstractA very short survey of research conducted in Poland on the development of the rotating detonation engine (RDE) is presented. Initial studies conducted in cooperation with Japanese partners lead to development of a joint patent on RDE. Then, an intensive basic and applied research was started at the Institute of Heat Engineering of the Warsaw University of Technology. One of the first achievements was the demonstration of performance of the rocket engine with an aerospike nozzle utilizing continuously rotating detonation (CRD), and research was directed into development of a small turbofan engine utilizing such a combustion regime. These activities promoted international cooperation and stimulated RDE development not only in Poland but also in other countries. A research directed to measure and calculate flow parameters as well as to analyze the use of liquid fuels was conducted. In the Institute of Aviation in Warsaw, research on the application of the CRD to turbine engines as well as rocket, ramjet, and combined cycle engines was carried out. In the paper, a special emphasis is given to international cooperation in this area with partners from many countries engaged in the development of the pressure gain combustion to propulsion systems.


2021 ◽  
Author(s):  
Robert T. Fievisohn ◽  
John Hoke ◽  
Ryan T. Battelle ◽  
Christopher Klingshirn ◽  
Adam T. Holley ◽  
...  

Author(s):  
Seyed M. Ghoreyshi ◽  
Meinhard T. Schobeiri

Abstract The paper investigates the dynamic behavior of an Ultra-High Efficiency Gas Turbine Engine (UHEGT) with Stator Internal Combustion. The UHEGT-technology was introduced for the first time to the gas turbine design community at the Turbo Expo 2015. In developing the UHEGT-technology, the combustion process is no longer contained in isolation between the compressor and turbine, rather distributed in the first three HP-turbine stator rows. Noticeable improvement in the engine thermal efficiency and power along with other performance advantages are brought by this technology. In the current paper, a dynamic simulation is performed on the entire gas turbine engine (UHEGT) using the nonlinear dynamic simulation code GETRAN. The simulations are in 2D (space-time) and include the majority of the engine components including rotor shaft, turbine and compressor, fuel injectors, diffuser, pipes, valves, controllers, etc. The thermo-fluid conservation laws are applied to the flow in each component which create a system of nonlinear partial differential equations that is solved numerically. Two different fuel schedules (steep rise and Gaussian) are applied to all injectors and the engine response is studied in each case. The results show that fluctuations in the fuel flow lead to fluctuations in most of the system parameters such as temperatures, power, shaft speed, etc. However, the shapes and amplitudes of the fluctuations are different and there is a time lag in the response profiles relative to the fuel schedules. It is shown that an increase in average fuel flow in the system leads to a small drop in efficiency due to the cycle change from the design point. Moreover, it is seen that the temperatures usually rise fast with increase of fuel flow, but the system tends to cool down with a slower rate as the fuel is reduced.


Sign in / Sign up

Export Citation Format

Share Document