Volume 4: Ceramics; Concentrating Solar Power Plants; Controls, Diagnostics and Instrumentation; Education; Electric Power; Fans and Blowers
Latest Publications


TOTAL DOCUMENTS

80
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791855188

Author(s):  
James DiCampli

Combined heat and power (CHP) is an application that utilizes the exhaust heat generated from a gas turbine and converts it into a useful energy source for heating & cooling, or additional electric generation in combined cycle configurations. Compared to simple-cycle plants with no heat recovery, CHP plants emit fewer greenhouse gasses and other emissions, while generating significantly more useful energy per unit of fuel consumed. Clean plants are easier to permit, build and operate. Because of these advantages, projections show CHP capacity is expected to double and account for 24% of global electricity production by 2030. An aeroderivative power plant has distinct advantages to meet CHP needs. These include high thermal efficiency, low cost, easy installation, proven reliability, compact design for urban areas, simple operation and maintenance, fuel flexibility, and full power generation in a very short time period. There has been extensive discussion and analyses on modifying purge requirements on cycling units for faster dispatch. The National Fire Protection Association (NFPA) has required an air purge of downstream systems prior to startup to preclude potentially flammable or explosive conditions. The auto ignition temperature of natural gas fuel is around 800°F. Experience has shown that if the exhaust duct contains sufficient concentrations of captured gas fuel, and is not purged, it can ignite immediately during light off causing extensive damage to downstream equipment. The NFPA Boiler and Combustion Systems Hazards Code Committee have developed new procedures to safely provide for a fast-start capability. The change in the code was issued in the 2011 Edition of NFPA 85 and titled the Combustion Turbine Purge Credit. For a cycling plant and hot start conditions, implementation of purge credit can reduce normal start-to-load by 15–30 minutes. Part of the time saving is the reduction of the purge time itself, and the rest is faster ramp rates due to a higher initial temperature and pressure in the heat recovery steam generator (HRSG). This paper details the technical analysis and implementation of the NFPA purge credit recommendations on GE Power and Water aeroderivative gas turbines. This includes the hardware changes, triple block and double vent valve system (or drain for liquid fuels), and software changes that include monitoring and alarms managed by the control system.


Author(s):  
Marco Cioffi ◽  
Enrico Puppo ◽  
Andrea Silingardi

In typical heavy duty gas turbines the multistage axial compressor is provided with anti-surge pipelines equipped with on-off valves (blow-off lines), to avoid dangerous flow instabilities during start-ups and shut-downs. Blow-off lines show some very peculiar phenomena and somewhat challenging fluid dynamics, which require a deeper regard. In this paper the blow-off lines in axial gas turbines are analyzed by adopting an adiabatic quasi-unidimensional model of the gas flow through a pipe with a constant cross-sectional area and involving geometrical singularities (Fanno flow). The determination of the Fanno limit, on the basis of the flow equation and the second principle of thermodynamics, shows the existence of a critical pipe length which is a function of the pipe parameters and the initial conditions: for a length greater than this maximum one, the model requires a mass-flow reduction. In addition, in the presence of a regulating valve, so-called multi-choked flow can arise. The semi-analytical model has been implemented and the results have been compared with a three-dimensional CFD analysis and cross-checked with available field data, showing a good agreement. The Fanno model has been applied for the analysis of some of the actual machines in the Ansaldo Energia fleet under different working conditions. The Fanno tool will be part of the design procedure of new machines. In addition it will define related experimental activities.


Author(s):  
Edson Batista da Silva ◽  
Marcelo Assato ◽  
Rosiane Cristina de Lima

Usually, the turbogenerators are designed to fire a specific fuel, depending on the project of these engines may be allowed the operation with other kinds of fuel compositions. However, it is necessary a careful evaluation of the operational behavior and performance of them due to conversion, for example, from natural gas to different low heating value fuels. Thus, this work describes strategies used to simulate the performance of a single shaft industrial gas turbine designed to operate with natural gas when firing low heating value fuel, such as biomass fuel from gasification process or blast furnace gas (BFG). Air bled from the compressor and variable compressor geometry have been used as key strategies by this paper. Off-design performance simulations at a variety of ambient temperature conditions are described. It was observed the necessity for recovering the surge margin; both techniques showed good solutions to achieve the same level of safe operation in relation to the original engine. Finally, a flammability limit analysis in terms of the equivalence ratio was done. This analysis has the objective of verifying if the combustor will operate using the low heating value fuel. For the most engine operation cases investigated, the values were inside from minimum and maximum equivalence ratio range.


Author(s):  
Adam M. Hurst ◽  
Joe VanDeWeert

Accurate static and dynamic pressure measurements provide the feedback needed to advance gas turbine efficiency and reliability as well as improve aircraft design and flight control. During turbine testing and aircraft flight testing, flush mounting pressure transducers at the desired pressure measurement location is not always feasible and recess mounting with connective tubing is often used as an alternative. Resonances in the connective tubing can result in aliasing within pressure scanners even within a narrow bandwidth and especially when higher frequency content DC to ∼125Hz is desired. We present experimental results that investigate tube resonances and attenuation in 1.35mm inner diameter (ID) (used on 0.063in tubulations) and 2.69mm ID (used on 0.125in tubulations) Teflon and Nylon tubing at various lengths. We utilize a novel dynamic pressure generator, capable of creating large changes in air pressure (<1psi to 10psi, <6.8kPa to 68.9kPa), to determine the frequency response of such tubing from ∼1Hz to 2,800Hz. We further compare these experimental results to established analytical models for propagation of pressure disturbances in narrow tubes. While significant theoretical and experimental work relating to the frequency response of connective tubing or transmission lines has been published, there is limited literature presenting experimental frequency response data with air as the media in elastic tubing. In addition, little progress has been made in addressing the issue of tubing-related aliasing within pressure scanners, as the low sampling rate in scanners often makes post-processing antialiasing filters ineffective. The experimental results and analytical models presented herein can be used as a guideline to prevent aliasing and signal distortion by guiding the proper design of pressure transmission systems, resulting in accurate static and dynamic pressure measurements with pressure scanners. The data presented here should serve as a reference to instrumentation engineers so that they can make higher frequency measurements (up to ∼125Hz, currently) and are able to quantify the expected pressure transmission line (tube) attenuation and know if aliasing will be a concern. This information will give engineers greater measurement capability when using pressure scanners to make static and dynamic pressure measurements.


Author(s):  
Igor Loboda ◽  
Sergiy Yepifanov

Efficiency of gas turbine monitoring systems primarily depends on the accuracy of employed algorithms, in particular, pattern recognition techniques to diagnose gas path faults. In investigations many techniques were applied to recognize gas path faults, but recommendations on selecting the best technique for real monitoring systems are still insufficient and often contradictory. In our previous works, three recognition techniques were compared under different conditions of gas turbine diagnosis. The comparative analysis has shown that all these techniques yield practically the same accuracy for each comparison case. The present contribution considers a new recognition technique, Probabilistic Neural Network (PNN), comparing it with the techniques previously examined. The results for all comparison cases show that the PNN is not practically inferior to the other techniques. With this inference, the recommendation is to choose the PNN for real monitoring systems because it has an important advantage of providing confidence estimation for every diagnostic decision made.


Author(s):  
Sebastian Knirsch ◽  
Dietmar Mandt ◽  
Uwe Mauch ◽  
Konrad Bamberger ◽  
Thomas Carolus

An important subsystem in most surface transport vehicles is the forced-air cooling module. Under specific operational conditions of the vehicle the cooling system is the major noise source and the component with the largest consumption of energy. A comprehensive time domain simulation model was developed for simulation of the cooling module in a Diesel locomotive under realistic operational conditions. It includes the components that produce waste heat such as the engine, the turbo transmission, the brake, etc. and the cooling module with its fans. Given the operation of the locomotive e.g. in terms of speed vs. time along a track and its load, data from experimental full scale tests agree well with predictions from the time domain model. The onset of cooling fan operation is predicted well, with it their instantaneous energy consumption and sound radiation. Three optimized cooling unit assemblies for the new locomotive Voith Gravita 15L had been developed and pre-assessed utilizing the model and eventually tested in the locomotive under realistic operational conditions. A new thermodynamically advanced cooling unit with aerodynamically and acoustically optimized fans was found superior by approx. 2 dB (A) less sound power radiation and some 30% less energy consumption as compared to the benchmark. It is anticipated that those advantages are even more distinct as the ambient temperature decreases. The work is part of the European FP7 transport research project ECOQUEST.


Author(s):  
Kurt P. Rouser ◽  
Caitlin R. Thorn ◽  
Aaron R. Byerley ◽  
Charles F. Wisniewski ◽  
Scott R. Nowlin ◽  
...  

The Department of Aeronautics at the United States Air Force Academy utilizes a closed-loop, two-dimensional turbine cascade wind tunnel to reinforce a learning-focused undergraduate thermo-propulsion sequence. While previous work presented in the literature outlined the Academy thermo-propulsion sequence and the contextual framework for instruction, this current paper addresses how the Academy turbine cascade facility is integrated into the aeronautical engineering course sequence. Cadets who concentrate in propulsion are to some extent prepared for each successive course through their contact with the cascade, and ultimately they graduate with an exposure to experimental research that enhances their grasp of gas turbine engine fundamentals. Initially, the cascade is used to reinforce airfoil theory to all cadets in the Fundamentals of Aeronautics course. Aeronautical engineering majors take this course during the first semester of their sophomore year. The next semester all aeronautical engineering majors take Introduction to Aero-thermodynamics. In this course, the closed-loop aspect of the cascade facility is used to reinforce concepts of work addition to the flow. Heat transfer is also discussed, using the heat exchanger that regulates test section temperature. Exposure to the cascade also prepares cadets for the ensuing Introduction to Propulsion and Aeronautics Laboratory courses, taken in the junior and senior year, respectively. In the propulsion course, cadets connect thermodynamic principles to component analysis. In the laboratory course, cadets work in pairs on propulsion projects sponsored by the Air Force Research Laboratory, including projects in the cascade wind tunnel. Individual cadets are selected from the cascade research teams for summer internships, working at an Air Force Research Laboratory turbine cascade tunnel. Ultimately, cadet experiences with the Academy turbine cascade help lay the foundation for a two-part senior propulsion capstone sequence in which cadets design a gas turbine engine starting with the overall cycle selection leading to component-level design. The turbine cascade also serves to integrate propulsion principles and fluid mechanics through a senior elective Computational Fluid Dynamics course. In this course, cadets may select a computational project related to the cascade. Cadets who complete the thermo-propulsion sequence graduate with a thorough understanding of turbine engine fundamentals from both conceptual and applied perspectives. Their exposure to the cascade facility is an important part of the process. An assessment of cadet learning is presented to validate the effectiveness of this integrated research-classroom approach.


Author(s):  
Todd Engel

Ceramic Matrix Composite (CMC) materials are an attractive design option for various high-temperature structural applications. In particular, the use of CMC materials as a replacement for state-of-the-art nickel-based superalloys in hot gas path turbomachinery components offers the potential for significant increases in turbine system efficiencies, due largely to reductions in cooling requirements afforded by the increased temperature capabilities inherent to the ceramic material. However, two-dimensional fabric-laminated CMCs typically exhibit low tensile strengths in the thru-thickness (interlaminar) direction, and interply delamination is a concern for some targeted applications. Currently, standardized test methods only address the characterization of interlaminar tensile strengths at ambient temperatures; this is problematic given that nearly all CMCs are slated for service in high-temperature operating environments. This work addresses the development of a new test technique for the high-temperature measurement of interlaminar tensile properties in CMCs, allowing for the characterization of material properties under conditions more analogous to anticipated service environments in order to yield more robust component designs.


Author(s):  
Mark G. Turner ◽  
Markus P. Rumpfkeil ◽  
James T. VanKuren ◽  
Rory A. Roberts ◽  
Jeffrey Bons ◽  
...  

An undergraduate student design and build project has been established by the US Air Force, Air Force Research Laboratory as part of an outreach program. During the 2011–2012 academic year, undergraduate students of six universities participated in designing a thrust vectoring system for a small (20 pound-thrust) jet engine. A description of the project parameters and student designs is given in this paper. It proved to be an extremely successful project, and other professors and students can learn from the different approaches taken by the six different teams and the project itself. Industry will also be interested in the depth and breadth of an undergraduate project that is being used to educate their future engineering workforce.


Author(s):  
Ashley P. Wiese ◽  
Matthew J. Blom ◽  
Michael J. Brear ◽  
Chris Manzie ◽  
Anthony Kitchener

This paper presents and validates a physics-based, dynamic model of a gas turbine. The model is an extension of that proposed by Badmus et al. [1], such that representation of a complete gas turbine is achieved. It includes new models of several gas turbine components, in particular the turbine and compressor, and also applies a well known method for prescribing boundary conditions [10] to the gas path. This model first uses data from a previously published, static model of the same gas turbine to determine this dynamic model’s many so-called ‘forcing terms’. A least-squares optimisation is then undertaken to estimate the shaft inertia and the thermal inertia of system components using transient test data. Importantly, these optimised results are all close to physically reasonable estimates. Further, they show that the shaft dynamics are only significant for a short period at the start of most transients, after which the dynamic effects of thermal storage are dominant. The complete gas turbine model is then validated against transient test data. Whilst the simulated traces demonstrate some steady-state error arising from the static model [12], the overall system dynamics appear to be captured well. Since steady-state error can be integrated out in a control system, this suggests that the proposed dynamic model is appropriate for use in a model-based, gas turbine controller.


Sign in / Sign up

Export Citation Format

Share Document