scholarly journals Compressibility effects on homogeneous isotropic turbulence using Schur decomposition of the velocity gradient tensor.

2021 ◽  
Author(s):  
Radouan Boukharfane ◽  
Aimad Er-Raiy ◽  
Matteo Parsani
2020 ◽  
Vol 198 ◽  
pp. 104389 ◽  
Author(s):  
Ryosuke Nagata ◽  
Tomoaki Watanabe ◽  
Koji Nagata ◽  
Carlos B. da Silva

2018 ◽  
Vol 848 ◽  
pp. 876-905 ◽  
Author(s):  
Christopher J. Keylock

The velocity gradient tensor for turbulent flow contains crucial information on the topology of turbulence, vortex stretching and the dissipation of energy. A Schur decomposition of the velocity gradient tensor (VGT) is introduced to supplement the standard decomposition into rotation and strain tensors. Thus, the normal parts of the tensor (represented by the eigenvalues) are separated explicitly from non-normality. Using a direct numerical simulation of homogeneous isotropic turbulence, it is shown that the norm of the non-normal part of the tensor is of a similar magnitude to the normal part. It is common to examine the second and third invariants of the characteristic equation of the tensor simultaneously (the$\unicode[STIX]{x1D64C}{-}\unicode[STIX]{x1D64D}$diagram). With the Schur approach, the discriminant function separating real and complex eigenvalues of the VGT has an explicit form in terms of strain and enstrophy: where eigenvalues are all real, enstrophy arises from the non-normal term only. Re-deriving the evolution equations for enstrophy and total strain highlights the production of non-normality and interaction production (normal straining of non-normality). These cancel when considering the evolution of the VGT in terms of its eigenvalues but are important for the full dynamics. Their properties as a function of location in$\unicode[STIX]{x1D64C}{-}\unicode[STIX]{x1D64D}$space are characterized. The Schur framework is then used to explain two properties of the VGT: the preference to form disc-like rather than rod-like flow structures, and the vorticity vector and strain alignments. In both cases, non-normality is critical for explaining behaviour in vortical regions.


1999 ◽  
Vol 381 ◽  
pp. 141-174 ◽  
Author(s):  
ANDREW OOI ◽  
JESUS MARTIN ◽  
JULIO SORIA ◽  
M. S. CHONG

Since the availability of data from direct numerical simulation (DNS) of turbulence, researchers have utilized the joint PDFs of invariants of the velocity gradient tensor to study the geometry of small-scale motions of turbulence. However, the joint PDFs only give an instantaneous static representation of the properties of fluid particles and dynamical Lagrangian information cannot be extracted. In this paper, the Lagrangian evolution of the invariants of the velocity gradient tensor is studied using conditional mean trajectories (CMT). These CMT are derived using the concept of the conditional mean time rate of change of invariants calculated from a numerical simulation of isotropic turbulence. The study of the CMT in the invariant space (RA, QA) of the velocity-gradient tensor, invariant space (RS, QS) of the rate-of-strain tensor, and invariant space (RW, QW) of the rate-of-rotation tensor show that the mean evolution in the (Σ, QW) phase plane, where Σ is the vortex stretching, is cyclic with a characteristic period similar to that found by Martin et al. (1998) in the cyclic mean evolution of the CMT in the (RA, QA) phase plane. Conditional mean trajectories in the (Σ, QW) phase plane suggest that the initial reduction of QW in regions of high QW is due to viscous diffusion and that vorticity contraction only plays a secondary role subsequent to this initial decay. It is also found that in regions of the flow with small values of QW, the local values of QW do not begin to increase, even in the presence of self-stretching, until a certain self-stretching rate threshold is reached, i.e. when Σ≈0.25 〈QW〉1/2. This study also shows that in regions where the kinematic vorticity number (as defined by Truesdell 1954) is low, the local value of dissipation tends to increase in the mean as observed from a Lagrangian frame of reference. However, in regions where the kinematic vorticity number is high, the local value of enstrophy tends to decrease. From the CMT in the (−QS, RS phase plane, it is also deduced that for large values of dissipation, there is a tendency for fluid particles to evolve towards having a positive local value of the intermediate principal rate of strain.


1998 ◽  
Vol 10 (9) ◽  
pp. 2336-2346 ◽  
Author(s):  
Jesús Martı́n ◽  
Andrew Ooi ◽  
M. S. Chong ◽  
Julio Soria

2013 ◽  
Vol 737 ◽  
pp. 571-596 ◽  
Author(s):  
Laurent Chevillard ◽  
Charles Meneveau

AbstractThe orientation dynamics of small anisotropic tracer particles in turbulent flows is studied using direct numerical simulation (DNS) and results are compared with Lagrangian stochastic models. Generalizing earlier analysis for axisymmetric ellipsoidal particles (Parsa et al., Phys. Rev. Lett., vol. 109, 2012, 134501), we measure the orientation statistics and rotation rates of general, triaxial–ellipsoidal tracer particles using Lagrangian tracking in DNS of isotropic turbulence. Triaxial ellipsoids that are very long in one direction, very thin in another and of intermediate size in the third direction exhibit reduced rotation rates that are similar to those of rods in the ellipsoid’s longest direction, while exhibiting increased rotation rates that are similar to those of axisymmetric discs in the thinnest direction. DNS results differ significantly from the case when the particle orientations are assumed to be statistically independent from the velocity gradient tensor. They are also different from predictions of a Gaussian process for the velocity gradient tensor, which does not provide realistic preferred vorticity–strain-rate tensor alignments. DNS results are also compared with a stochastic model for the velocity gradient tensor based on the recent fluid deformation approximation (RFDA). Unlike the Gaussian model, the stochastic model accurately predicts the reduction in rotation rate in the longest direction of triaxial ellipsoids since this direction aligns with the flow’s vorticity, with its rotation perpendicular to the vorticity being reduced. For disc-like particles, or in directions perpendicular to the longest direction in triaxial particles, the model predicts noticeably smaller rotation rates than those observed in DNS, a behaviour that can be understood based on the probability of vorticity orientation with the most contracting strain-rate eigendirection in the model.


Sign in / Sign up

Export Citation Format

Share Document