Performance of Various Turbulence Models for Simulating Sub-critical High-Reynolds Number Flows over a Smooth Cylinder

2021 ◽  
Author(s):  
Michael D. Mays ◽  
Sylvain Laizet ◽  
Sylvain Lardeau
1994 ◽  
Vol 9 (3) ◽  
pp. 279-285 ◽  
Author(s):  
Rahima K. Mohammed ◽  
Tim A. Osswald ◽  
Timothy J. Spiegelhoff ◽  
Esther M. Sun

2017 ◽  
Vol 14 (06) ◽  
pp. 1750068 ◽  
Author(s):  
Lucy T. Zhang

Immersed methods are considered as a class of nonboundary-fitted meshing technique for simulating fluid–structure interactions. However, the conventional approach of coupling the fluid and solid domains, as in the immersed boundary method and the immersed finite element method, often cannot handle high Reynolds number flows interacting with moving and deformable solids. As the solid dynamics is imposed by the fluid dynamics, it often leads to unrealistically large deformation of the solid in cases of high Reynolds number flows. The first attempt in resolving this issue was proposed in the modified immersed finite element method (mIFEM), however, some terms were determined heuristically. In this paper, we provide a full and rigorous derivation for the mIFEM with corrections to the previously proposed terms, which further extends the accuracy of the algorithm. In the “swapped” coupling logic, we solve for the dynamics of the solid, and then numerically impose it to the background fluid, which allows the solid to control its own dynamics and governing laws instead of following that of the fluid. A few examples including a biomedical engineering application are shown to demonstrate the capability in handling large Reynolds number flows using the derived mIFEM.


2002 ◽  
Vol 12 (03) ◽  
pp. 393-406 ◽  
Author(s):  
ZI-NIU WU ◽  
SONG FU

The k-epsilon turbulence model for incompressible flow involves two advection–diffusion equations plus point-source terms. We propose a new method for positivity analysis. This method uses an iterative procedure combined with an operator splitting. With this method we recover the well-known positivity result for the standard high Reynolds number model. Most importantly, we are able to prove the positivity result for general low Reynolds number k-epsilon models.


Sign in / Sign up

Export Citation Format

Share Document