Computational Fluid Dynamics Investigation of a Novel Oscillating Water Column

2022 ◽  
Author(s):  
Frimpong Opoku ◽  
Michael D. Atkinson ◽  
Mohammad Nasim Uddin
2021 ◽  
Vol 2053 (1) ◽  
pp. 012013
Author(s):  
N. Abdul Settar ◽  
S. Sarip ◽  
H.M. Kaidi

Abstract Wells turbine is an important component in the oscillating water column (OWC) system. Thus, many researchers tend to improve the performance via experiment or computational fluid dynamics (CFD) simulation, which is cheaper. As the CFD method becomes more popular, the lack of evidence to support the parameters used during the CFD simulation becomes a big issue. This paper aims to review the CFD models applied to the Wells turbine for the OWC system. Journal papers from the past ten years were summarized in brief critique. As a summary, the FLUENT and CFX software are mostly used to simulate the Wells turbine flow problems while SST k-ω turbulence model is the widely used model. A grid independence test is essential when doing CFD simulation. In conclusion, this review paper can show the research gap for CFD simulation and can reduce the time in selecting suitable parameters when involving simulation in the Wells turbine.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Piyush Mohapatra ◽  
K. G. Vijay ◽  
Anirban Bhattacharyya ◽  
Trilochan Sahoo

Abstract Oscillating water column (OWC) wave energy converters are one of the most widely researched devices for ocean wave energy harvesting. This study investigates the hydrodynamic performance of a shore-fixed OWC device for different bottom slopes using two numerical approaches, namely, computational fluid dynamics (CFD) and boundary integral equation method (BIEM). In the BIEM method, the boundary value problem is solved in two-dimensional Cartesian coordinates using the linear water wave theory. The CFD model uses a numerical wave tank (NWT) built using the volume of fluid (VOF) method. Numerical computations are carried out for different sloped bottom geometries and front wall drafts to analyze the hydrodynamic efficiency. There is a general agreement between CFD and BIEM results in terms of resonating behavior of the device. It is observed that the front wall draft has a more significant effect, a lower draft leading to a wider frequency band for optimum conversion at high efficiency. While the BIEM-based analysis resulted in improved performance curve for few of the steeper slopes, the CFD study predicted a lower peak efficiency for the same slopes due to the consideration of real fluid characteristics. Detailed performance comparisons are presented using the time histories of free surface elevation, chamber pressure, and streamlines at different time instants within the OWC chamber.


2021 ◽  
Vol 144 (5) ◽  
Author(s):  
L. Ciappi ◽  
M. Stebel ◽  
J. Smolka ◽  
L. Cappietti ◽  
G. Manfrida

Abstract The sea is an important renewable energy resource for its extension and the power conveyed by waves, currents, tides, and thermal gradients. Amongst these physical phenomena, sea waves are the source with the highest energy density and may contribute to fulfilling the global increase of power demand. Despite the potential of sea waves, their harnessing is still a technological challenge. Oscillating water column systems operating with Wells turbines represent one of the most straightforward and reliable solutions for the optimal exploitation of this resource. An analytical model and computational fluid dynamics models were developed to evaluate the functioning of monoplane isolated Wells turbines. For the former modeling typology, a blade element momentum code relying on the actuator disk theory was applied, considering the rotor as a set of airfoils. For the latter modeling typology, a three-dimensional multi-block technique was implemented to create the computational domain with a fully mapped mesh composed of hexahedral elements. The employment of circumferential periodic boundary conditions allowed for the reduction of computational power and time. The models use Reynolds-averaged Navier-Stokes (RANS) or u-RANS schemes with a multiple reference frame approach or the u-RANS formulation with a sliding mesh approach. The achieved results were compared with analytical and experimental literature data for validation. All the developed models showed good agreement. The analytical model is suitable for a fast prediction of the turbine operation on a wide set of configurations during the first design stages, while the computational fluid dynamics (CFD) models are indicated for the further investigation of the selected configurations.


Author(s):  
Piyush Mohapatra ◽  
Trilochan Sahoo

In this study, the effect of the stepped sea bed on the hydrodynamic performance of an oscillating water column device is investigated using computational fluid dynamics . This investigation is performed in a numerical wave tank modeled using ANSYS Fluent, which incorporates a transient, multiphase volume of fluid method to track the air–water interface. The power take-off unit is modeled as a porous zone in the flow field to produce the pressure jump versus flow characteristics that of a real air turbine. The efficiency of the chamber with and without the stepped bottom is analyzed and compared with known results in the literature. The flow parameters such as the temporal evolution and distribution of the pressure field, velocity field and free surface are studied to understand the performance of the proposed model. The study reveals that there is an improvement in hydrodynamic efficiency with the inclusion of the stepped bottom beneath the oscillating water column chamber, which is in agreement with the previous studies carried out using analytical and boundary integral equation methods. Moreover, the computational fluid dynamics model helps to understand the flow dynamics inside the oscillating water column chamber in a more intricate manner compared to the potential flow-based studies pursued in the literature. The formation of vortices within the oscillating water column chamber, near the front wall and stepped bottom could be captured, which affects the chamber performance to a certain extent. Overall, the study could be useful in the initial design stage of shore fixed oscillating water column devices.


2019 ◽  
Vol 5 (6) ◽  
pp. eaaw0260 ◽  
Author(s):  
Brandt M. Gibson ◽  
Imran A. Rahman ◽  
Katie M. Maloney ◽  
Rachel A. Racicot ◽  
Helke Mocke ◽  
...  

Reconstructing Precambrian eukaryotic paleoecology is pivotal to understanding the origins of the modern, animal-dominated biosphere. Here, we combine new fossil data from southern Namibia with computational fluid dynamics (CFD) to test between competing feeding models for the Ediacaran taxon Ernietta. In addition, we perform simulations for multiple individuals, allowing us to analyze hydrodynamics of living communities. We show that Ernietta lived gregariously, forming shallow marine aggregations in the latest Ediacaran, 548 to 541 million years (Ma) ago. We demonstrate enhanced vertical mixing of the water column above aggregations and preferential redirection of current into body cavities of downstream individuals. These results support the reconstruction of Ernietta as a macroscopic suspension feeder and also provide a convincing paleoecological advantage to feeding in aggregations analogous to those recognized in many extant marine metazoans. These results provide some of the oldest evidence of commensal facilitation by macroscopic eukaryotes yet recognized in the fossil record.


Sign in / Sign up

Export Citation Format

Share Document