pressure jump
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 31)

H-INDEX

32
(FIVE YEARS 4)

Soft Matter ◽  
2022 ◽  
Author(s):  
Göran Surmeier ◽  
Michael Paulus ◽  
Eric Schneider ◽  
Susanne Dogan ◽  
Metin Tolan ◽  
...  

Cellular solutes affect the equilibration of cubic lipid structures after pressure-induced phase transitions.


2021 ◽  
Vol 11 (17) ◽  
pp. 8019
Author(s):  
Pablo García-Fogeda ◽  
Fernando de la Iglesia ◽  
Keyvan Salehi

In this study, a method for determining the effects of fluids on the dynamic characteristics of an aerospace structure and the response of the structure when it is excited by the acoustical loads produced during a rocket launch, has been developed. Elevated acoustical loads are critical in the design of large lightweight structures, such as solar arrays and communication reflectors, because of the high acceleration levels. The acoustic field generated during rocket launch can be considered as a diffuse field composed of many uncorrelated incident plane waves traveling in different directions, which impinge on the structure. A boundary element method was used to calculate the pressure jump produced by an incoming plane wave on an unbaffled plate and the fluid–structure coupled loads generated through plate vibration. This method is based on Kirchhoff’s integral formulation of the Helmholtz equation for pressure fields. The generalized force matrix attributed to the fluid loads was then formulated, taking the modes of the plate in vacuum as base functions of the structural displacement. These modes are obtained using a finite-element model. An iteration procedure was developed to calculate the natural frequencies of the fully coupled fluid–plate system. Comparison of the results obtained using the proposed method with those of other theories and experimental data demonstrated its efficiency and accuracy. The proposed method is suitable for analyzing plates of arbitrary shape subjected to any boundary conditions in a diffuse field for low to medium values of the frequency excitation range.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1523
Author(s):  
Jung-Kyu Choi ◽  
Hyoung-Tae Kim ◽  
Chang-Sup Lee ◽  
Seung-Jae Lee

In this paper, a numerical investigation was carried out on the performances of a designed axial flow pump for a large cavitation tunnel. From this, the flow characteristics, force, and torque performance of the axial flow pump were investigated, and the rotating speeds of the impeller satisfying the test section speed performances required in the large cavitation tunnel were estimated. The axial flow pump was modeled such that the impeller, stator, and nacelle were located in a cylindrical tunnel. The calculations were carried out for incompressible steady-state turbulent flow considering the impeller rotating. The performance of the pump was confirmed, finding that the head gain was caused by the pressure jump downstream of the pump. The performance of the stator was confirmed to be good enough to refine the tangential flow due to the impeller rotating. To investigate the operating performance of the large cavitation tunnel, the head loss of the entire tunnel without the pump was obtained from a numerical analysis. The operating points were estimated from the specific speed–head coefficient curves, and it was found that the present numerical results were in good agreement with the experiments.


2021 ◽  
Author(s):  
Jihwan Kim ◽  
Byoung-Ju Choi ◽  
Rachid Omira

Abstract The Yellow Sea is recognized as a meteotsunami “hot-spot”, with a relatively high rate of events’ occurrence. The March 2007 and May 2008 meteotsunami events attracted large attention due to their deadly and high impact on the west coast of the Korean Peninsula. However, other small size meteotsunamis remain less known because of their insignificant coastal effect. Yet, a better understanding of meteotsunami hazard in the Yellow Sea requires thorough investigation of both large and small events. This paper reveals the occurrence of a meteotsunami on 11–12 June 2009 in the eastern Yellow Sea. It addresses the analyses of both the recorded sea-level and air-pressure data, the correlation between the atmospheric forcing and the meteotsunami formation, the numerical modeling of meteotsunami propagation, and the resonance effects on the recorded waves. Analysis results evidence a moving air-pressure jump of about 3 hPa that disturbed the sea surface and caused a meteotsunami with wave height up to 0.45 m (crest-to-trough). Both meteorological observations and numerical modeling suggest a speed of 11 to 13 m/s for the atmospheric disturbance propagation, which is much smaller than the optimal condition for Proudman resonance of meteotsunamis in the eastern Yellow Sea. Here, we demonstrate that the Greenspan resonance was responsible for amplifying the incident waves. Despite the insignificant coastal impact of the 11 June 2009 event, its investigation unravels new insights into the formation, amplification, and hazard extent of small size meteotsunamis in the Yellow Sea.


Author(s):  
Manuel Gascón-Pérez

In this paper, the thermo-acoustic behavior of a rectangular panel fully immersed in a compressible fluid at rest is investigated. A boundary element method (BEM) has been employed taking into account the Kirchhoff–Helmholtz (K-H) integral equation for the acoustic pressure and with the fluid-plate interface boundary condition the acoustic pressure jump over the panel is calculated. The thermal effects are considered regarding in the form of a uniform increment of temperature of the panel and are analyzed in order to prevent the buckling phenomena. The deformation modes of the panel correspond to the vacuum case. Applying a collocation method for the panel equation, the natural frequencies are obtained. The effects of several geometric parameters regarding different thermal loads on these frequencies are evaluated. Furthermore, the influence of the wave number for different temperatures of the panel on the acoustic damping ratio is evaluated, as well as the acoustic radiation efficiency for the different modes. The verification of the method is proven with other works.


2021 ◽  
Vol 9 (2) ◽  
pp. 150
Author(s):  
Anna Feichtner ◽  
Ed Mackay ◽  
Gavin Tabor ◽  
Philipp R. Thies ◽  
Lars Johanning

Computational fluid dynamics (CFD) modelling of wave interaction with thin perforated structures is of interest in a range of engineering applications. When large-scale effects such as forces and the overall flow behaviour are of interest, a microstructural resolution of the perforated geometry can be excessive or prohibitive in terms of computational cost. More efficiently, a thin porous structure can be represented by its macro-scale effects by means of a quadratic momentum source or pressure-drop respectively. In the context of regular wave interaction with thin porous structures and within an incompressible, two-phase Navier–Stokes and volume-of-fluid framework (based on interFoam of OpenFOAM®), this work investigates porosity representation as a porous surface with a pressure-jump condition and as volumetric isotropic and anisotropic porous media. Potential differences between these three types of macro-scale porosity implementations are assessed in terms of qualitative flow visualizations, velocity profiles along the water column, the wave elevation near the structures and the horizontal force on the structures. The comparison shows that all three types of implementation are capable of reproducing large-scale effects of the wave-structure interaction and that the differences between all obtained results are relatively small. It was found that the isotropic porous media implementation is numerically the most stable and requires the shortest computation times. The pressure-jump implementation requires the smallest time steps for stability and thus the longest computation times. This is likely due to the spurious local velocities at the air-water interface as a result of the volume-of-fluid interface capturing method combined with interFoam’s segregated pressure-velocity coupling algorithm. This paper provides useful insights and recommendations for effective macro-scale modelling of thin porous structures.


Author(s):  
Kseniia A. BORODINA

Studying the processes occurring in liquid films under thermal influence allows improving a variety of technological systems, since a thin layer aids in providing a high intensity of heat and mass transfer and a significant surface of phase contact with a minimum liquid consumption. Many Russian and international works wrote about theoretical and experimental studies of film flows, though paid insufficient attention to the study of the behavior of films of a binary homogeneous solution. This article studies the behavior of a thin liquid film containing a volatile component during local heating of a solid horizontal substrate. The presented calculations were performed for an aqueous solution of isopropanol. The author describes the formation of a specific surface shape, which is formed with a sufficient increase in the substrate temperature and the initial film thickness — the so-called “liquid drop”, separated from the main volume of the liquid by a thin extended layer, which is explained by the sequential occurrence of thermal and concentration-capillary flows. The results show a significant influence of the Laplace pressure jump on the character of the entire process. In addition, the cooling of the substrate leads to multidirectional flows, but in the opposite directions. The analysis of the functions of the temperature of the film free surface, the volatile component concentration in the solution, and the vapor density over the free surface at different times is carried out. The velocity field in liquid and gas during the evolution of thermocapillary and concentration-capillary flows is illustrated.


Sign in / Sign up

Export Citation Format

Share Document