Numerical Investigation of Film Cooling Effectiveness Including Shockwave Interaction in a Supersonic Nozzle Flow

2022 ◽  
Author(s):  
Manoj Prabakar Sargunaraj ◽  
Andres Torres ◽  
Jose Garduna ◽  
Marcel Otto ◽  
Jayanta S. Kapat ◽  
...  
Author(s):  
M. T. Schobeiri ◽  
K. Lu ◽  
J. C. Han

The impact of the purge flow injection on aerodynamics and film cooling effectiveness of a high pressure turbine with non-axisymmetric endwall contouring has been numerically investigated. For this purpose, the geometry and boundary condition of a three-stage turbine at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University is utilized. The turbine is being prepared to experimentally verify the results of the current numerical investigations. Its rotor includes non-axisymmetric endwall contouring on the first and second rotor row. In the preceding paper [1] it was shown that the endwall contouring of the second rotor contouring was able to substantially increase the turbine efficiency. To investigate the film cooling in conjunction with a purge flow injection, the first turbine rotor hub was contoured. Applying the same contouring method, however, different aerodynamic behavior of the first rotor was observed due to its immediate exposure to the purge flow injection. Consequently, the endwall design of the first rotor row required particular attention. The purge flow investigation involves the reference case without endwall contouring followed by the investigation with endwall contouring. The turbine used for this numerical investigation has two independent cooling loops. The first loop supplies coolant air to the stator-rotor gap, while the second loop provides cooling air to the downstream discrete film-cooling holes and blade tip cooling injection holes. For the current investigations the second loop is closed. Film cooling effectiveness is numerically simulated for rotor frequency of 2400 rpm. Efficiency, pressure, temperature and film cooling effectiveness distributions are determined for purge mass flow ratios of MFR = 0.5%, 1.0% and 2.0%. The small amount of the injected mass flow drastically changes the development of the secondary flow structure of the contoured first turbine row partially reversing the improvement tendency obtained from the endwall contouring.


2021 ◽  
Vol 1 (2) ◽  
pp. 31-38
Author(s):  
Grine Mustapha ◽  
Ben Ali Kouchih Fatima ◽  
Boualem Khadidja ◽  
Azzi Abbès

Author(s):  
Harald Peter Kissel ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Sven Olaf Neumann ◽  
Antje Ungewickell

This paper presents an experimental and numerical investigation into film cooling performance over a flat plate. As previous studies have shown, the flow situation at the entry-side of the cooling hole shows a notable effect on film cooling performance. The present investigation takes this into account feeding the cooling holes from an internal cooling channel and not from a stagnant plenum. High resolution heat transfer coefficient and adiabatic film cooling effectiveness distributions received from transient liquid crystal experiments are presented. The Reynolds numbers of the hot gas channel and the coolant crossflow feeding the holes are varied. Furthermore, the effects of 45° angled ribs, introduced into the cooling channel, are investigated. The experiments are performed at constant blowing, momentum and pressure ratios. Numerical calculations of the adiabatic film cooling effectiveness for selected configurations using FLUENT are presented. Comparison reveals the influence of coolant channel Reynolds number and the introduced ribs on the cooling hole flow pattern leading to a changed film cooling performance.


Sign in / Sign up

Export Citation Format

Share Document