Design and Characterization of the Sandia Free-Piston Reflected Shock Tunnel

2022 ◽  
Author(s):  
Kyle P. Lynch ◽  
Thomas Grasser ◽  
Paul Farias ◽  
Kyle Daniel ◽  
Russell Spillers ◽  
...  
1994 ◽  
Vol 47 (6S) ◽  
pp. S14-S19
Author(s):  
Hans Hornung ◽  
Chihyung Wen ◽  
Patrick Germain

Many of the flow problems associated with flight vehicles designed to reach or return from space can not be solved computationally. It is essential to address them by experiment, in particular, by ground simulation of the flow. The requirements and most successful simulation techniques are described, and their important limitations are discussed. Two selected examples are then presented from the free-piston reflected shock tunnel T5 at Caltech: Dissociating flow over spheres and transition from laminar to turbulent flow on a slender cone.


2021 ◽  
Vol 62 (11) ◽  
Author(s):  
Peter Collen ◽  
Luke J. Doherty ◽  
Suria D. Subiah ◽  
Tamara Sopek ◽  
Ingo Jahn ◽  
...  

Abstract The T6 Stalker Tunnel is a multi-mode, high-enthalpy, transient ground test facility. It is the first of its type in the UK. The facility combines the original free-piston driver from the T3 Shock Tunnel with modified barrels from the Oxford Gun Tunnel. Depending on test requirements, it can operate as a shock tube, reflected shock tunnel or expansion tube. Commissioning tests of the free-piston driver are discussed, including the development of four baseline driver conditions using piston masses of either 36 kg or 89 kg. Experimental data are presented for each operating mode, with comparison made to numerical simulations. In general, high-quality test flows are observed. The calculated enthalpy range of the experimental conditions achieved varies from $$2.7\hbox { MJ kg}^{-1}$$ 2.7 MJ kg - 1 to $$115.0\hbox { MJ kg}^{-1}$$ 115.0 MJ kg - 1 . Graphical abstract


2006 ◽  
Vol 110 (1103) ◽  
pp. 21-39 ◽  
Author(s):  
R. J. Stalker

AbstractThe development of new methods of producing hypersonic wind-tunnel flows at increasing velocities during the last few decades is reviewed with attention to airbreathing propulsion, hypervelocity aerodynamics and superorbital aerodynamics. The role of chemical reactions in these flows leads to use of a binary scaling simulation parameter, which can be related to the Reynolds number, and which demands that smaller wind tunnels require higher reservoir pressure levels for simulation of flight phenomena. The use of combustion heated vitiated wind tunnels for propulsive research is discussed, as well as the use of reflected shock tunnels for the same purpose. A flight experiment validating shock-tunnel results is described, and relevant developments in shock tunnel instrumentation are outlined. The use of shock tunnels for hypervelocity testing is reviewed, noting the role of driver gas contamination in determining test time, and presenting examples of air dissociation effects on model flows. Extending the hypervelocity testing range into the superorbital regime with useful test times is seen to be possible by use of expansion tube/tunnels with a free piston driver.


2021 ◽  
Author(s):  
Nick J. Parziale ◽  
Muhammad A. Mustafa ◽  
David Shekhtman ◽  
Joanna M. Austin ◽  
Wesley M. Yu
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document